Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 1, Pages 90–109
DOI: https://doi.org/10.4213/tmf450
(Mi tmf450)
 

This article is cited in 4 scientific papers (total in 4 papers)

Reparameterization-Invariant Reduction in the Hamiltonian Description of a Relativistic String

B. M. Barbashov, V. N. Pervushin

Joint Institute for Nuclear Research
Full-text PDF (276 kB) Citations (4)
References:
Abstract: We study the time-reparameterization-invariant dynamics of an open relativistic string using the generalized Dirac–Hamilton theory and resolving the constraints of the first kind. The reparameterization-invariant evolution variable is the time coordinate of the string center of mass. Using a transformation that preserves the diffeomorphism group of the generalized Hamiltonian and the Poincaré covariance of the local constraints, we segregate the center-of-mass coordinates from the local degrees of freedom of the string. We identify the time coordinate of the string center of mass and the proper time measured in the string frame of reference using the Levi-Civita–Shanmugadhasan canonical transformation, which transforms the global constraint (the mass shell) in the new momentum such that the Hamiltonian reduction does not require the corresponding gauge condition. Resolving the local constraints, we obtain an equivalent reduced system whose Hamiltonian describes the evolution w.r.t. the proper time of the string center of mass. The Röhrlich quantum relativistic string theory, which includes the Virasoro operators $L_n$ only with $n>0$, is used to quantize this system. In our approach, the standard problems that appear in the traditional quantization scheme, including the space-time dimension $D=26$ and the tachyon emergence, arise only in the case of a massless string, $M^2=0$.
Received: 08.10.2000
Revised: 28.12.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 1, Pages 483–499
DOI: https://doi.org/10.1023/A:1010363908953
Bibliographic databases:
Language: Russian
Citation: B. M. Barbashov, V. N. Pervushin, “Reparameterization-Invariant Reduction in the Hamiltonian Description of a Relativistic String”, TMF, 127:1 (2001), 90–109; Theoret. and Math. Phys., 127:1 (2001), 483–499
Citation in format AMSBIB
\Bibitem{BarPer01}
\by B.~M.~Barbashov, V.~N.~Pervushin
\paper Reparameterization-Invariant Reduction in the Hamiltonian Description of a Relativistic String
\jour TMF
\yr 2001
\vol 127
\issue 1
\pages 90--109
\mathnet{http://mi.mathnet.ru/tmf450}
\crossref{https://doi.org/10.4213/tmf450}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863521}
\zmath{https://zbmath.org/?q=an:0993.81043}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 1
\pages 483--499
\crossref{https://doi.org/10.1023/A:1010363908953}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170446000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf450
  • https://doi.org/10.4213/tmf450
  • https://www.mathnet.ru/eng/tmf/v127/i1/p90
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :201
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024