Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 48, Number 1, Pages 13–23 (Mi tmf4467)  

This article is cited in 16 scientific papers (total in 16 papers)

Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II)

B. S. Getmanov
References:
Abstract: A study is made of the new two-dimensional nonlinear model of a complex scalar field (“complex sine-Gordon II”) which was discovered earlier by the author and can be integrated by the inverse scattering technique. The corresponding linear spectral problem is found and formulated in terms of the matrices of the algebra of the group $SU(3)$. The model has two types of soliton solutions which have vanishing and nonvanishing asymptotic behavior at infinity. An infinite series of integrable Lorentz-invariant systems that generalize the sine-Gordon equation is also obtained; when the first of them is reduced to Lagrangian form, it is identical with the model studied in the present paper.
Received: 30.04.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 48, Issue 1, Pages 572–579
DOI: https://doi.org/10.1007/BF01037980
Bibliographic databases:
Language: Russian
Citation: B. S. Getmanov, “Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II)”, TMF, 48:1 (1981), 13–23; Theoret. and Math. Phys., 48:1 (1981), 572–579
Citation in format AMSBIB
\Bibitem{Get81}
\by B.~S.~Getmanov
\paper Integrable two-dimensional Lorentz-invariant nonlinear model of a~complex scalar field (complex sine-Gordon~II)
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 13--23
\mathnet{http://mi.mathnet.ru/tmf4467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630266}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 572--579
\crossref{https://doi.org/10.1007/BF01037980}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200002}
Linking options:
  • https://www.mathnet.ru/eng/tmf4467
  • https://www.mathnet.ru/eng/tmf/v48/i1/p13
  • This publication is cited in the following 16 articles:
    1. Gleb A. Kotousov, Sergei L. Lukyanov, “Spectrum of the reflection operators in different integrable structures”, J. High Energ. Phys., 2020:2 (2020)  crossref
    2. Igor Barashenkov, Nonlinear Systems and Complexity, 26, A Dynamical Perspective on the ɸ4 Model, 2019, 187  crossref
    3. Constantin Candu, Yacine Ikhlef, “Nonlinear integral equations for the $\mathrm{SL}(2,\mathbb {R})/\mathrm{U}(1)$ black hole sigma model”, J. Phys. A: Math. Theor., 46:41 (2013), 415401  crossref
    4. Simone Giombi, Vasily Pestun, Riccardo Ricci, “Notes on supersymmetric Wilson loops on a two-sphere”, J. High Energ. Phys., 2010:7 (2010)  crossref
    5. N Dorey, “Notes on integrability in gauge theory and string theory”, J. Phys. A: Math. Theor., 42:25 (2009), 254001  crossref
    6. M. Grigoriev, A.A. Tseytlin, “Pohlmeyer reduction of superstring sigma model”, Nuclear Physics B, 800:3 (2008), 450  crossref
    7. Sergyeyev, A, “Sasa-Satsuma (complex modified Korteweg-de Vries II) and the complex sine-Gordon II equation revisited: Recursion operators, nonlocal symmetries, and more”, Journal of Mathematical Physics, 48:4 (2007), 042702  crossref  mathscinet  zmath  adsnasa  isi
    8. A. V. Balandin, O. N. Kashcheeva, “Integrable systems of chiral type”, J. Math. Sci., 151:4 (2008), 3070–3082  mathnet  crossref  mathscinet  zmath  elib  elib
    9. Balandin, AV, “Lax representation of WZNW-like systems”, Regular & Chaotic Dynamics, 11:4 (2006), 435  crossref  isi
    10. Heng-Yu Chen, Nick Dorey, Keisuke Okamura, “Dyonic giant magnons”, J. High Energy Phys., 2006:09 (2006), 024  crossref
    11. Heng-Yu Chen, Nick Dorey, Keisuke Okamura, “On the scattering of magnon boundstates”, J. High Energy Phys., 2006:11 (2006), 035  crossref
    12. N. Olver, I. V. Barashenkov, “Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane”, Theoret. and Math. Phys., 144:2 (2005), 1223–1226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. I.V. Barashenkov, D.E. Pelinovsky, “Exact vortex solutions of the complex sine-Gordon theory on the plane”, Physics Letters B, 436:1-2 (1998), 117  crossref
    14. Vadim A. Brazhnikov, “Φ(2) perturbations of the WZW model”, Nuclear Physics B, 501:3 (1997), 685  crossref
    15. A.G Meshkov, “Hamiltonian and recursion operators for two-dimensional scalar fields”, Physics Letters A, 170:6 (1992), 405  crossref
    16. A.M. Kosevich, B.A. Ivanov, A.S. Kovalev, “Magnetic Solitons”, Physics Reports, 194:3-4 (1990), 117  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :175
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025