Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 48, Number 1, Pages 24–33 (Mi tmf4468)  

This article is cited in 15 scientific papers (total in 15 papers)

Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)

S. A. Tsyplyaev
References:
Abstract: In the classical inverse scattering method, an expression is derived for the Poisson brackets of the elements of the transition matrix in the local case when the Poisson brackets of the elements of the matrix of the auxiliary spectral problem contain in addition to the δ function a finite number of derivatives of it. An equation determining the classical r matrix is obtained. The commutation relations for the elements of the quantum monodromy matrix in the analogous situation are discussed.
Received: 28.05.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 48, Issue 1, Pages 580–586
DOI: https://doi.org/10.1007/BF01037981
Bibliographic databases:
Language: Russian
Citation: S. A. Tsyplyaev, “Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)”, TMF, 48:1 (1981), 24–33; Theoret. and Math. Phys., 48:1 (1981), 580–586
Citation in format AMSBIB
\Bibitem{Tsy81}
\by S.~A.~Tsyplyaev
\paper Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 24--33
\mathnet{http://mi.mathnet.ru/tmf4468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630267}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 580--586
\crossref{https://doi.org/10.1007/BF01037981}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200003}
Linking options:
  • https://www.mathnet.ru/eng/tmf4468
  • https://www.mathnet.ru/eng/tmf/v48/i1/p24
  • This publication is cited in the following 15 articles:
    1. Anatolij K. Prykarpatski, Victor A. Bovdi, “On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems”, Symmetry, 16:1 (2024), 76  crossref
    2. A Melikyan, G Weber, “Integrable theories and generalized graded Maillet algebras”, J. Phys. A: Math. Theor., 47:6 (2014), 065401  crossref
    3. Denis Blackmore, Yarema Prykarpatsky, Jolanta Golenia, Anatoli Prykapatski, “Hidden Symmetries of Lax Integrable Nonlinear Systems”, AM, 04:10 (2013), 95  crossref
    4. Yarema A. Prykarpatsky, “A description of Lax type integrable dynamical systems via the Marsden–Weinstein reduction method”, Communications in Nonlinear Science and Numerical Simulation, 18:9 (2013), 2295  crossref
    5. A. Melikyan, G. Weber, “The r-matrix of the Alday-Arutyunov-Frolov model”, J. High Energ. Phys., 2012:11 (2012)  crossref
    6. A. Ghose Choudhury, A. Roy Chowdhury, “Quantum inverse problem for the derivative nonlinear Schrödinger equation”, Phys. Rev. A, 49:6 (1994), 4326  crossref
    7. A. Kundu, B. Basu Mallick, “Investigation of the Hamiltonian Structure of the KdV System throughr-sMatrix Formalism Revealing Some New Aspects”, J. Phys. Soc. Jpn., 59:5 (1990), 1560  crossref
    8. A Kundu, “Integrability of classical and semiclassical derivative non-linear Schrodinger equation with non-ultralocal canonical structure”, J. Phys. A: Math. Gen., 21:4 (1988), 945  crossref
    9. G. Bhattacharya, S. Ghosh, “Yang-Baxter relation from operator product singularities”, Physics Letters B, 210:1-2 (1988), 193  crossref
    10. A Kundu, S Ghosh, “Soliton and breather states of the quantum sine-Gordon model in light cone coordinates through the exact QIST method”, J. Phys. A: Math. Gen., 21:20 (1988), 3951  crossref
    11. A Roy Chowdhury, Shibani Sen, “On the Poisson-Bracket algebra for the scattering data of a non-ultralocal field theory with soliton solutions”, Phys. Scr., 36:1 (1987), 7  crossref
    12. P. P. Kulish, S. A. Tsyplyaev, “Complete integrability of the supersymmetric model (cos ?)2”, J Math Sci, 34:5 (1986), 1972  crossref
    13. E Olmedilla, “Inverse scattering transform for general matrix Schrodinger operators and the related symplectic structure”, Inverse Problems, 1:3 (1985), 219  crossref
    14. L. D. Faddeev, Structural Elements in Particle Physics and Statistical Mechanics, 1983, 93  crossref
    15. P. P. Kulish, E. K. Sklyanin, Lecture Notes in Physics, 151, Integrable Quantum Field Theories, 1982, 61  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :176
    References:67
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025