Abstract:
In the classical inverse scattering method, an expression is derived for the Poisson
brackets of the elements of the transition matrix in the local case when the Poisson
brackets of the elements of the matrix of the auxiliary spectral problem contain in
addition to the δ function a finite number of derivatives of it. An equation determining the classical r matrix is obtained. The commutation relations for the elements of the quantum monodromy matrix in the analogous situation are discussed.
Citation:
S. A. Tsyplyaev, “Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)”, TMF, 48:1 (1981), 24–33; Theoret. and Math. Phys., 48:1 (1981), 580–586
\Bibitem{Tsy81}
\by S.~A.~Tsyplyaev
\paper Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 24--33
\mathnet{http://mi.mathnet.ru/tmf4468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630267}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 580--586
\crossref{https://doi.org/10.1007/BF01037981}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200003}
Linking options:
https://www.mathnet.ru/eng/tmf4468
https://www.mathnet.ru/eng/tmf/v48/i1/p24
This publication is cited in the following 15 articles:
Anatolij K. Prykarpatski, Victor A. Bovdi, “On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems”, Symmetry, 16:1 (2024), 76
A Melikyan, G Weber, “Integrable theories and generalized graded Maillet algebras”, J. Phys. A: Math. Theor., 47:6 (2014), 065401
Denis Blackmore, Yarema Prykarpatsky, Jolanta Golenia, Anatoli Prykapatski, “Hidden Symmetries of Lax Integrable Nonlinear Systems”, AM, 04:10 (2013), 95
Yarema A. Prykarpatsky, “A description of Lax type integrable dynamical systems via the Marsden–Weinstein reduction method”, Communications in Nonlinear Science and Numerical Simulation, 18:9 (2013), 2295
A. Melikyan, G. Weber, “The r-matrix of the Alday-Arutyunov-Frolov model”, J. High Energ. Phys., 2012:11 (2012)
A. Ghose Choudhury, A. Roy Chowdhury, “Quantum inverse problem for the derivative nonlinear Schrödinger equation”, Phys. Rev. A, 49:6 (1994), 4326
A. Kundu, B. Basu Mallick, “Investigation of the Hamiltonian Structure of the KdV System throughr-sMatrix Formalism Revealing Some New Aspects”, J. Phys. Soc. Jpn., 59:5 (1990), 1560
A Kundu, “Integrability of classical and semiclassical derivative non-linear Schrodinger equation with non-ultralocal canonical structure”, J. Phys. A: Math. Gen., 21:4 (1988), 945
G. Bhattacharya, S. Ghosh, “Yang-Baxter relation from operator product singularities”, Physics Letters B, 210:1-2 (1988), 193
A Kundu, S Ghosh, “Soliton and breather states of the quantum sine-Gordon model in light cone coordinates through the exact QIST method”, J. Phys. A: Math. Gen., 21:20 (1988), 3951
A Roy Chowdhury, Shibani Sen, “On the Poisson-Bracket algebra for the scattering data of a non-ultralocal field theory with soliton solutions”, Phys. Scr., 36:1 (1987), 7
P. P. Kulish, S. A. Tsyplyaev, “Complete integrability of the supersymmetric model (cos ?)2”, J Math Sci, 34:5 (1986), 1972
E Olmedilla, “Inverse scattering transform for general matrix Schrodinger operators and the related symplectic structure”, Inverse Problems, 1:3 (1985), 219
L. D. Faddeev, Structural Elements in Particle Physics and Statistical Mechanics, 1983, 93
P. P. Kulish, E. K. Sklyanin, Lecture Notes in Physics, 151, Integrable Quantum Field Theories, 1982, 61