Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 48, Number 1, Pages 3–12 (Mi tmf4466)  

This article is cited in 25 scientific papers (total in 25 papers)

Theory of group representations and integration of nonlinear dynamical systems

A. N. Leznov, M. V. Saveliev, V. G. Smirnov
References:
Abstract: For nonlinear two-dimensional dynamical systems associated with graded Lie algebras a method is developed for constructing general solutions. The construction is based on the realization of a Lax type representation by operators which take values in the corresponding algebra and uses the theory of representations of algebras.
Received: 11.04.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 48, Issue 1, Pages 565–571
DOI: https://doi.org/10.1007/BF01037979
Bibliographic databases:
Language: Russian
Citation: A. N. Leznov, M. V. Saveliev, V. G. Smirnov, “Theory of group representations and integration of nonlinear dynamical systems”, TMF, 48:1 (1981), 3–12; Theoret. and Math. Phys., 48:1 (1981), 565–571
Citation in format AMSBIB
\Bibitem{LezSavSmi81}
\by A.~N.~Leznov, M.~V.~Saveliev, V.~G.~Smirnov
\paper Theory of group representations and integration of nonlinear dynamical systems
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 3--12
\mathnet{http://mi.mathnet.ru/tmf4466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630265}
\zmath{https://zbmath.org/?q=an:0494.58019}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 565--571
\crossref{https://doi.org/10.1007/BF01037979}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200001}
Linking options:
  • https://www.mathnet.ru/eng/tmf4466
  • https://www.mathnet.ru/eng/tmf/v48/i1/p3
  • This publication is cited in the following 25 articles:
    1. Katsushi Ito, Mingshuo Zhu, “WKB analysis of the linear problem for modified affine Toda field equations”, J. High Energ. Phys., 2023:8 (2023)  crossref
    2. Jian Li, Chuanzhong Li, “Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation”, Commun. Theor. Phys., 73:8 (2021), 085002  crossref
    3. Dmitry Millionshchikov, “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 2018, 1–33  mathnet  crossref  isi  scopus
    4. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    5. R Willox, I Loris, “An algebraic description of generalizedk-constraints”, J. Phys. A: Math. Gen., 32:10 (1999), 2027  crossref
    6. A.N. Leznov, “Graded Lie algebras, representation theory, integrable mappings and systems. Non-abelian case”, Nuclear Physics B, 543:3 (1999), 652  crossref
    7. J. J. C. Nimmo, R. Willox, “Darboux transformations for the two-dimensional Toda system”, Proc. R. Soc. Lond. A, 453:1967 (1997), 2497  crossref
    8. J J C Nimmo, “Darboux transformations and the discrete KP equation”, J. Phys. A: Math. Gen., 30:24 (1997), 8693  crossref
    9. Lecture Notes in Physics Monographs, 36, Self-Dual Chern-Simons Theories, 1995, 188  crossref
    10. Guizhang Tu, Soliton Theory and Its Applications, 1995, 230  crossref
    11. Marco A.C. Kneipp, David I. Olive, “Crossing and antisolitons in affine Toda theories”, Nuclear Physics B, 408:3 (1993), 565  crossref
    12. Jean-Loup Gervais, Lochlainn O'Raifeartaigh, Alexander V. Razumov, Mikhail V. Saveliev, “Gauge conditions for the constrained-WZNW-Toda reductions”, Physics Letters B, 301:1 (1993), 41  crossref
    13. David I. Olive, Mikhail V. Saveliev, Jonathan W.R. Underwood, “On a solitonic specialisation for the general solutions of some two-dimensional completely integrable systems”, Physics Letters B, 311:1-4 (1993), 117  crossref
    14. V. V. Bazhanov, “Integrable quantum systems and classical Lie algebras”, Commun.Math. Phys., 113:3 (1987), 471  crossref
    15. P. J. Vassiliou, “Coupled systems of nonlinear wave equations and finite-dimensional lie algebras II: A nonlinear system arising from the group G 6.1 and its exact integration”, Acta Appl Math, 8:2 (1987), 149  crossref
    16. A. N. Leznov, “The inverse scattering method in a form invariant with respect to representations of the internal symmetry algebra”, Theoret. and Math. Phys., 58:1 (1984), 103–106  mathnet  crossref  mathscinet  isi
    17. M. V. Saveliev, “Integrable supermanifolds and associated nonlinear equations”, Theoret. and Math. Phys., 59:3 (1984), 560–563  mathnet  crossref  mathscinet  zmath  isi
    18. M. V. Saveliev, “Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms”, Theoret. and Math. Phys., 60:1 (1984), 638–647  mathnet  crossref  mathscinet  zmath  isi
    19. V. G. Drinfeld, V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, J. Soviet Math., 30:2 (1985), 1975–2036  mathnet  mathnet  crossref
    20. A. N. Leznov, M. V. Saveliev, “Nonlinear equations and graded Lie algebras”, J. Soviet Math., 36:6 (1987), 699–721  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:548
    Full-text PDF :180
    References:71
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025