Abstract:
To construct the radial part of the wave function in the
quasipotential model of a relativistic harmonic oscillator,
modified Pollaczek polynomials Pλ;ln(r) with
parameters λ>0 and l=0,1,2,… are introduced. An
orthogonality condition, the generating function, and various
recursion relations are obtained. It is shown that in the limiting
case when λ→∞ the polynomials
Pλ;ln(r) go over into generalized Laguerre
polynomials.
Citation:
N. M. Atakishiyev, “Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials”, TMF, 58:2 (1984), 254–260; Theoret. and Math. Phys., 58:2 (1984), 166–171
This publication is cited in the following 9 articles:
Sh. M. Nagiyev, R. M. Mir-Kasimov, “Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function”, Theoret. and Math. Phys., 214:1 (2023), 72–88
Sh. M. Nagiyev, R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant
external force. Wave functions and dynamical symmetry group”, Theoret. and Math. Phys., 208:3 (2021), 1265–1276
R.A. Frick, “Model of a relativistic oscillator in a generalized Schrödinger picture”, Annalen der Physik, 523:11 (2011), 871
Tomasz Goliński, Maciej Horowski, Anatol Odzijewicz, Aneta Sliżewska, “sl
(
2
,
R
)
symmetry and solvable multiboson systems”, Journal of Mathematical Physics, 48:2 (2007)
M. N. Atakishiyev, N. M. Atakishiyev, A. U. Klimyk, “On suq(1,1)-models of quantum oscillator”, Journal of Mathematical Physics, 47:9 (2006)
V. V. Borzov, E. V. Damaskinsky, “Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials”, J. Math. Sci. (N. Y.), 136:1 (2006), 3564–3579
N. M. Atakishiyev, Sh. M. Nagiyev, K. B. Wolf, “Wigner distribution functions for a relativistic linear oscillator”, Theoret. and Math. Phys., 114:3 (1998), 322–334
S. K. Suslov, “The theory of difference analogues of special functions of hypergeometric type”, Russian Math. Surveys, 44:2 (1989), 227–278
N. M. Atakishiyev, R. M. Mir-Kassimov, “Generalized coherent states for relativistic model of a linear oscillator”, Theoret. and Math. Phys., 67:1 (1986), 362–367