Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 2, Pages 254–260 (Mi tmf4325)  

This article is cited in 9 scientific papers (total in 9 papers)

Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials

N. M. Atakishiyev
Full-text PDF (649 kB) Citations (9)
References:
Abstract: To construct the radial part of the wave function in the quasipotential model of a relativistic harmonic oscillator, modified Pollaczek polynomials Pλ;ln(r) with parameters λ>0 and l=0,1,2, are introduced. An orthogonality condition, the generating function, and various recursion relations are obtained. It is shown that in the limiting case when λ the polynomials Pλ;ln(r) go over into generalized Laguerre polynomials.
Received: 21.07.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 2, Pages 166–171
DOI: https://doi.org/10.1007/BF01017923
Bibliographic databases:
Language: Russian
Citation: N. M. Atakishiyev, “Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials”, TMF, 58:2 (1984), 254–260; Theoret. and Math. Phys., 58:2 (1984), 166–171
Citation in format AMSBIB
\Bibitem{Ata84}
\by N.~M.~Atakishiyev
\paper Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 254--260
\mathnet{http://mi.mathnet.ru/tmf4325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743411}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 166--171
\crossref{https://doi.org/10.1007/BF01017923}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600011}
Linking options:
  • https://www.mathnet.ru/eng/tmf4325
  • https://www.mathnet.ru/eng/tmf/v58/i2/p254
  • This publication is cited in the following 9 articles:
    1. Sh. M. Nagiyev, R. M. Mir-Kasimov, “Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function”, Theoret. and Math. Phys., 214:1 (2023), 72–88  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Sh. M. Nagiyev, R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group”, Theoret. and Math. Phys., 208:3 (2021), 1265–1276  mathnet  crossref  crossref  adsnasa  isi  elib
    3. R.A. Frick, “Model of a relativistic oscillator in a generalized Schrödinger picture”, Annalen der Physik, 523:11 (2011), 871  crossref
    4. Tomasz Goliński, Maciej Horowski, Anatol Odzijewicz, Aneta Sliżewska, “sl ( 2 , R ) symmetry and solvable multiboson systems”, Journal of Mathematical Physics, 48:2 (2007)  crossref
    5. M. N. Atakishiyev, N. M. Atakishiyev, A. U. Klimyk, “On suq(1,1)-models of quantum oscillator”, Journal of Mathematical Physics, 47:9 (2006)  crossref
    6. V. V. Borzov, E. V. Damaskinsky, “Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials”, J. Math. Sci. (N. Y.), 136:1 (2006), 3564–3579  mathnet  crossref  mathscinet  zmath
    7. N. M. Atakishiyev, Sh. M. Nagiyev, K. B. Wolf, “Wigner distribution functions for a relativistic linear oscillator”, Theoret. and Math. Phys., 114:3 (1998), 322–334  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. S. K. Suslov, “The theory of difference analogues of special functions of hypergeometric type”, Russian Math. Surveys, 44:2 (1989), 227–278  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. N. M. Atakishiyev, R. M. Mir-Kassimov, “Generalized coherent states for relativistic model of a linear oscillator”, Theoret. and Math. Phys., 67:1 (1986), 362–367  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :144
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025