Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 2, Pages 261–278 (Mi tmf4526)  

This article is cited in 11 scientific papers (total in 11 papers)

Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states

A. G. Basuev
References:
Abstract: It is shown that at low temperatures and for arbitrary external fields (activities zk, z^={zk}) the ensemble with the Hamiltonian (1) and particles in the set Φ is equivalent to |Φ| Ising models with activities bk(z^),b^(z^)={bk(z^)}. The mapping b^(z^) is a homeomorphism on the positive octant l(Φ) if supklkexp{βε(k,l)}ψ¯1, where ψ¯1 is a small number. The pressure in the ensemble is p(z^)=supkΦbk(z^)=|b^(z^)|. The limit Gibbs states corresponding to the vector z^ are small perturbations of the ground states α(x)=qG1(z^) and are labeled by elements of the set G1(z^)={q^:lnbq(z^)=p(z^)}, where the function G1(z^) defines the phase diagram of the ensemble. In the regions of constancy of G1(z^) the pressure can be continued to a holomorphie function, and the particle densities zlp/zl are continuous in the closure of a region of constancy of G1(z^).
Received: 19.05.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 2, Pages 171–182
DOI: https://doi.org/10.1007/BF01017924
Bibliographic databases:
Language: Russian
Citation: A. G. Basuev, “Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states”, TMF, 58:2 (1984), 261–278; Theoret. and Math. Phys., 58:2 (1984), 171–182
Citation in format AMSBIB
\Bibitem{Bas84}
\by A.~G.~Basuev
\paper Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 261--278
\mathnet{http://mi.mathnet.ru/tmf4526}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743412}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 171--182
\crossref{https://doi.org/10.1007/BF01017924}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600012}
Linking options:
  • https://www.mathnet.ru/eng/tmf4526
  • https://www.mathnet.ru/eng/tmf/v58/i2/p261
  • This publication is cited in the following 11 articles:
    1. A. G. Basuev, “Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem”, Theoret. and Math. Phys., 153:1 (2007), 1434–1457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. A. G. Basuev, “Ising model in half-space: A series of phase transitions in low magnetic fields”, Theoret. and Math. Phys., 153:2 (2007), 1539–1574  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Hans-Otto Georgii, Olle Häggström, Christian Maes, Phase Transitions and Critical Phenomena, 18, 2001, 1  crossref
    4. Aernout C. D. van Enter, Roberto Fernández, Alan D. Sokal, “Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory”, J Stat Phys, 72:5-6 (1993), 879  crossref
    5. J. Bricmont, J. Slawny, “Phase transitions in systems with a finite number of dominant ground states”, J Stat Phys, 54:1-2 (1989), 89  crossref
    6. F. Koukiou, D. Petritis, M. Zahradn�k, “Extension of the Pirogov-Sinai theory to a class of quasiperiodic interactions”, Commun.Math. Phys., 118:3 (1988), 365  crossref
    7. S. N. Isakov, “Phase diagrams and singularity at the point of a phase transition of the first kind in lattice gas models”, Theoret. and Math. Phys., 71:3 (1987), 638–648  mathnet  crossref  mathscinet  isi
    8. A. G. Basuev, “Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases”, Theoret. and Math. Phys., 72:2 (1987), 861–871  mathnet  crossref  mathscinet  isi
    9. J. Bricmont, A. El Mellouki, J. Fröhlich, “Random surfaces in statistical mechanics: Roughening, rounding, wetting,...”, J Stat Phys, 42:5-6 (1986), 743  crossref
    10. J. Bricmont, J. Slawny, Lecture Notes in Physics, 257, Statistical Mechanics and Field Theory: Mathematical Aspects, 1986, 10  crossref
    11. A. G. Basuev, “Hamiltonian of the phase separation border and phase transitions of the first kind. I”, Theoret. and Math. Phys., 64:1 (1985), 716–734  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :94
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025