Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1980, Volume 44, Number 3, Pages 307–320 (Mi tmf3619)  

This article is cited in 16 scientific papers (total in 16 papers)

Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I

V. A. Smirnov
References:
Abstract: Conditions of the presence of infrared and ultraviolet divergences of coefficient functions corresponding to arbitrary scalar Feynman diagrams and considered as tempered distributions are found. Analytical regularisation is used to analyse both types of divergences. It is shown that for any graph Γ there is a domain of regularising complex parameters λl in which the corresponding coefficient function is an analytical function of these parameters (in the distribution theory sense) possessing analytical continuation into all of CL as a meromorphic function with two series of poles (“ultraviolet” and “infrared” ones). Infrared poles are located on hyperplanes defined by relationships: lγλl=ΩΓ(γ)+n, n=0,1, and ΩΓ(γ) being the index of infrared divergency of a subgraph γ of the graph Γ. These relationships are to be written for the graphs including massless particles only.
Received: 03.08.1979
English version:
Theoretical and Mathematical Physics, 1980, Volume 44, Issue 3, Pages 761–770
DOI: https://doi.org/10.1007/BF01029040
Bibliographic databases:
Language: Russian
Citation: V. A. Smirnov, “Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I”, TMF, 44:3 (1980), 307–320; Theoret. and Math. Phys., 44:3 (1980), 761–770
Citation in format AMSBIB
\Bibitem{Smi80}
\by V.~A.~Smirnov
\paper Infrared and ultraviolet divergences of~the coefficient functions of~Feynman diagrams as~tempered distributions.~I
\jour TMF
\yr 1980
\vol 44
\issue 3
\pages 307--320
\mathnet{http://mi.mathnet.ru/tmf3619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=596205}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 44
\issue 3
\pages 761--770
\crossref{https://doi.org/10.1007/BF01029040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LP32400002}
Linking options:
  • https://www.mathnet.ru/eng/tmf3619
  • https://www.mathnet.ru/eng/tmf/v44/i3/p307
  • This publication is cited in the following 16 articles:
    1. É. Yu. Lerner, “Feynman integrals of p-adic argument in momentum space III. Renormalization”, Theoret. and Math. Phys., 106:2 (1996), 195–208  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Smirnov, “Asymptotic expansions in limits of large momenta and masses”, Commun.Math. Phys., 134:1 (1990), 109  crossref
    3. A. I. Zaslavskii, “Behavior of massless feynman integrals near singular points”, Theoret. and Math. Phys., 80:3 (1989), 935–941  mathnet  crossref  mathscinet  isi
    4. D. I. Kazakov, “Many-loop calculations: The uniqueness method and functional equations”, Theoret. and Math. Phys., 62:1 (1985), 84–89  mathnet  crossref  isi
    5. V. A. Smirnov, K. G. Chetyrkin, “R operation in the minimal subtraction scheme”, Theoret. and Math. Phys., 63:2 (1985), 462–469  mathnet  crossref  mathscinet  isi
    6. S. A. Anikin, V. A. Smirnov, “Renormalization and Operator Product Expansion in Theories with Massless Particles”, Fortschr. Phys., 33:9 (1985), 523  crossref
    7. V. A. Smirnov, “Feynman Amplitudes as Tempered Distributions”, Fortschr. Phys., 33:9 (1985), 495  crossref
    8. V. A. Smirnov, “Absolutely convergent α representation of analytically and dimensionally regularized Feynman amplitudes”, Theoret. and Math. Phys., 59:3 (1984), 563–573  mathnet  crossref  mathscinet  isi
    9. S. A. Anikin, V. A. Smirnov, “The R operation in theories with massless particles”, Theoret. and Math. Phys., 60:1 (1984), 664–670  mathnet  crossref  mathscinet  isi
    10. K.G. Chetyrkin, V.A. Smirnov, “corrected”, Physics Letters B, 144:5-6 (1984), 419  crossref
    11. V. A. Smirnov, K. G. Chetyrkin, “Dimensional regularization and infrared divergences”, Theoret. and Math. Phys., 56:2 (1983), 770–776  mathnet  crossref  mathscinet  isi
    12. William E. Caswell, A. D. Kennedy, “Asymptotic behavior of Feynman integrals: Convergent integrals”, Phys. Rev. D, 28:12 (1983), 3073  crossref
    13. S. A. Anikin, V. A. Smirnov, “Analytic renormalization of massless theories”, Theoret. and Math. Phys., 51:1 (1982), 317–321  mathnet  crossref  mathscinet  isi
    14. V. A. Smirnov, “Singularities of feynman amplitudes in the momentum space”, Theoret. and Math. Phys., 47:1 (1981), 369–371  mathnet  crossref  mathscinet  isi
    15. V. A. Smirnov, “The singularities of Feynman diagrams in the coordinate space and the α-representation”, Theoret. and Math. Phys., 46:1 (1981), 17–21  mathnet  crossref  mathscinet  isi
    16. V. A. Smirnov, “In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II”, Theoret. and Math. Phys., 46:2 (1981), 132–140  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :139
    References:66
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025