Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 46, Number 2, Pages 199–212 (Mi tmf2330)  

This article is cited in 10 scientific papers (total in 10 papers)

In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II

V. A. Smirnov
References:
Abstract: The results of the author are generalized to the case of nonsealar Feynman diagrams. It is shown that the analytically regularized coefficient function $F_\Gamma(\underline q)$ associated with an arbitrary graph $\Gamma$ is a functional in $S'(R^{4k})$ and an analytic function of the regularizing parameters $\lambda_l$ in some nonempty domain, from which it can be continued to the whole of $C^L$ as a meromorphic function with two series of poles (infrared and ultraviolet). Conditions under which the coefficient functions have no infrared divergences as functionals in $S'$ are obtained. It is shown how and under what conditions a coefficient function can be defined as a functional on a subspace of $S(R^{4k})$.
Received: 21.11.1979
English version:
Theoretical and Mathematical Physics, 1981, Volume 46, Issue 2, Pages 132–140
DOI: https://doi.org/10.1007/BF01030847
Bibliographic databases:
Language: Russian
Citation: V. A. Smirnov, “In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II”, TMF, 46:2 (1981), 199–212; Theoret. and Math. Phys., 46:2 (1981), 132–140
Citation in format AMSBIB
\Bibitem{Smi81}
\by V.~A.~Smirnov
\paper In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions.~II
\jour TMF
\yr 1981
\vol 46
\issue 2
\pages 199--212
\mathnet{http://mi.mathnet.ru/tmf2330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=612955}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 46
\issue 2
\pages 132--140
\crossref{https://doi.org/10.1007/BF01030847}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NE30200005}
Linking options:
  • https://www.mathnet.ru/eng/tmf2330
  • https://www.mathnet.ru/eng/tmf/v46/i2/p199
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :88
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024