Abstract:
A class of model systems is considered in which particles interact only if they have definite momenta pi and not all the pi allowed by the conservation laws. It is shown that the equilibrium correlation functions and the reduced density matrices of the model systems and systems with approximating Hamiltonian are equal in the thermodynamic limit.
Citation:
N. N. Bogolyubov (Jr.), D. Ya. Petrina, “On a class of model systems that admit a lowering of powers in the Hamiltonian in the thermodynamic limit. II”, TMF, 37:2 (1978), 246–257; Theoret. and Math. Phys., 37:2 (1978), 998–1005
\Bibitem{BogPet78}
\by N.~N.~Bogolyubov (Jr.), D.~Ya.~Petrina
\paper On~a~class of model systems that admit a~lowering of powers in the Hamiltonian in the thermodynamic limit.~II
\jour TMF
\yr 1978
\vol 37
\issue 2
\pages 246--257
\mathnet{http://mi.mathnet.ru/tmf3115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=516209}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 37
\issue 2
\pages 998--1005
\crossref{https://doi.org/10.1007/BF01036370}
This publication is cited in the following 2 articles:
N. N. Bogolyubov (Jr.), I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, N. S. Tonchev, “Some classes of exactly soluble models of problems in quantum statistical mechanics: the method of the approximating Hamiltonian”, Russian Math. Surveys, 39:6 (1984), 1–50
E. D. Belokolos, D. Ya. Petrina, “Connection between the approximating Hamiltonian method and theta-function integration”, Theoret. and Math. Phys., 58:1 (1984), 40–46