Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 3, Pages 357–386
DOI: https://doi.org/10.4213/tmf2322
(Mi tmf2322)
 

This article is cited in 21 scientific papers (total in 21 papers)

Enumerations of half-turn-symmetric alternating-sign matrices of odd order

A. V. Razumov, Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: Kuperberg showed that the partition function of the square-ice model related to half-turn-symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijective correspondence with half-turn-symmetric alternating-sign matrices of odd order. The partition function of this model is expressed via the above factors. We find the contributions to the partition function that correspond to the alternating-sign matrices having $1$ or $-1$ as the central entry and establish the related enumerations.
Keywords: alternating-sign matrices, enumerations, square-ice model.
Received: 13.02.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 3, Pages 1174–1198
DOI: https://doi.org/10.1007/s11232-006-0111-8
Bibliographic databases:
Language: Russian
Citation: A. V. Razumov, Yu. G. Stroganov, “Enumerations of half-turn-symmetric alternating-sign matrices of odd order”, TMF, 148:3 (2006), 357–386; Theoret. and Math. Phys., 148:3 (2006), 1174–1198
Citation in format AMSBIB
\Bibitem{RazStr06}
\by A.~V.~Razumov, Yu.~G.~Stroganov
\paper Enumerations of half-turn-symmetric alternating-sign matrices of odd order
\jour TMF
\yr 2006
\vol 148
\issue 3
\pages 357--386
\mathnet{http://mi.mathnet.ru/tmf2322}
\crossref{https://doi.org/10.4213/tmf2322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283658}
\zmath{https://zbmath.org/?q=an:1177.15041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1174R}
\elib{https://elibrary.ru/item.asp?id=9277371}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 3
\pages 1174--1198
\crossref{https://doi.org/10.1007/s11232-006-0111-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241043900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748936351}
Linking options:
  • https://www.mathnet.ru/eng/tmf2322
  • https://doi.org/10.4213/tmf2322
  • https://www.mathnet.ru/eng/tmf/v148/i3/p357
  • This publication is cited in the following 21 articles:
    1. Fischer I. Saikia M.P., “Refined Enumeration of Symmetry Classes of Alternating Sign Matrices”, J. Comb. Theory Ser. A, 178 (2021), 105350  crossref  mathscinet  isi
    2. Bogdan Grechuk, Landscape of 21st Century Mathematics, 2021, 51  crossref
    3. Ayyer A. Behrend R.E. Fischer I., “Extreme Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order”, Adv. Math., 367 (2020), 107125  crossref  mathscinet  isi
    4. Ayyer A., Behrend R.E., “Factorization Theorems For Classical Group Characters, With Applications to Alternating Sign Matrices and Plane Partitions”, J. Comb. Theory Ser. A, 165 (2019), 78–105  crossref  mathscinet  isi  scopus
    5. Khazret S. Nirov, Alexander V. Razumov, “Vertex Models and Spin Chains in Formulas and Pictures”, SIGMA, 15 (2019), 068, 67 pp.  mathnet  crossref
    6. J. Math. Sci. (N. Y.), 242:5 (2019), 742–752  mathnet  crossref
    7. Behrend R.E. Fischer I. Konvalinka M., “Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order”, Adv. Math., 315 (2017), 324–365  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Fischer I., “Short proof of the ASM theorem avoiding the six-vertex model”, J. Comb. Theory Ser. A, 144:SI (2016), 139–156  crossref  mathscinet  zmath  isi  scopus
    9. Hamel A.M., King R.C., “Half-Turn Symmetric Alternating Sign Matrices and Tokuyama Type Factorisation For Orthogonal Group Characters”, J. Comb. Theory Ser. A, 131 (2015), 1–31  crossref  mathscinet  zmath  isi
    10. Brubaker B., Schultz A., “the Six-Vertex Model and Deformations of the Weyl Character Formula”, J. Algebr. Comb., 42:4 (2015), 917–958  crossref  mathscinet  zmath  isi  scopus
    11. Angèle M. Hamel, Ronald C. King, “Half-turn symmetric alternating sign matrices and Tokuyama type factorisation for orthogonal group characters”, Journal of Combinatorial Theory, Series A, 131 (2015), 1  crossref
    12. Cantini L. Sportiello A., “A One-Parameter Refinement of the Razumov-Stroganov Correspondence”, J. Comb. Theory Ser. A, 127 (2014), 400–440  crossref  mathscinet  zmath  isi  scopus
    13. Behrend R.E., Di Francesco Ph., Zinn-Justin P., “A Doubly-Refined Enumeration of Alternating Sign Matrices and Descending Plane Partitions”, J. Comb. Theory Ser. A, 120:2 (2013), 409–432  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    14. Behrend R.E., “Multiply-Refined Enumeration of Alternating Sign Matrices”, Adv. Math., 245 (2013), 439–499  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Paul Zinn-Justin, Springer Proceedings in Mathematics & Statistics, 40, Symmetries, Integrable Systems and Representations, 2013, 599  crossref
    16. Behrend R.E., Di Francesco Ph., Zinn-Justin P., “On the weighted enumeration of alternating sign matrices and descending plane partitions”, J Combin Theory Ser A, 119:2 (2012), 331–363  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Aval J.-Christophe, Duchon Ph., “Enumeration of alternating sign matrices of even size (quasi-)invariant under a quarter-turn rotation”, Electronic Journal of Combinatorics, 17:1 (2010), R51  crossref  mathscinet  zmath  isi
    18. A. V. Razumov, Yu. G. Stroganov, “Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit”, Theoret. and Math. Phys., 161:2 (2009), 1451–1459  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. J.-Ch. Aval, “The symmetry of the partition function of some square ice models”, Theoret. and Math. Phys., 161:3 (2009), 1582–1589  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    20. R. Douglas Chatham, “Reflections on the N + k Queens Problem”, The College Mathematics Journal, 40:3 (2009), 204  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :194
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025