Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 3, Pages 387–397
DOI: https://doi.org/10.4213/tmf2323
(Mi tmf2323)
 

Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain

V. L. Vereshchagin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We write formulas for soliton solutions of the discrete Toda chain and pose the integrable boundary value problem for this chain. We find conditions for the parameters {(}discrete spectrum points, transmission coefficients, and the corresponding factors{\rm)} whereby solutions of the integrable boundary value problem are selected from all soliton solutions. As a result, we construct two hierarchies of soliton solutions of the specified problem with even and odd soliton numbers and find an explicit form of the conditions for the parameters.
Keywords: discrete Toda chain, integrable boundary value problem, soliton.
Received: 02.02.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 3, Pages 1199–1209
DOI: https://doi.org/10.1007/s11232-006-0112-7
Bibliographic databases:
Language: Russian
Citation: V. L. Vereshchagin, “Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain”, TMF, 148:3 (2006), 387–397; Theoret. and Math. Phys., 148:3 (2006), 1199–1209
Citation in format AMSBIB
\Bibitem{Ver06}
\by V.~L.~Vereshchagin
\paper Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
\jour TMF
\yr 2006
\vol 148
\issue 3
\pages 387--397
\mathnet{http://mi.mathnet.ru/tmf2323}
\crossref{https://doi.org/10.4213/tmf2323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283659}
\zmath{https://zbmath.org/?q=an:1177.37077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1199V}
\elib{https://elibrary.ru/item.asp?id=9277372}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 3
\pages 1199--1209
\crossref{https://doi.org/10.1007/s11232-006-0112-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241043900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748919676}
Linking options:
  • https://www.mathnet.ru/eng/tmf2323
  • https://doi.org/10.4213/tmf2323
  • https://www.mathnet.ru/eng/tmf/v148/i3/p387
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :219
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025