|
This article is cited in 1 scientific paper (total in 1 paper)
The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in
commutative and noncommutative theories
R. N. Baranova, D. V. Bykova, A. A. Slavnovb a M. V. Lomonosov Moscow State University, Faculty of Physics
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We show that the gauge invariance of the operator$\int dx\,\operatorname{tr}(A_\mu^2-
2/(g\xi)x^\nu\theta_{\mu\nu}A^\mu)$ in a noncommutative gauge theory does not
lead to the gauge independence of its vacuum condensate. We obtain the generalized Ward identities for Green's functions containing the operator
$\lim_{\Omega\to\infty}(1/\Omega)\int_\Omega dx\,\operatorname{tr}(A_\mu^2)$ in commutative
and noncommutative gauge theories.
Keywords:
vacuum condensates, noncommutative field theory, quantum chromodynamics, confinement phase.
Received: 27.02.2006
Citation:
R. N. Baranov, D. V. Bykov, A. A. Slavnov, “The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in
commutative and noncommutative theories”, TMF, 148:3 (2006), 350–356; Theoret. and Math. Phys., 148:3 (2006), 1168–1173
Linking options:
https://www.mathnet.ru/eng/tmf2321https://doi.org/10.4213/tmf2321 https://www.mathnet.ru/eng/tmf/v148/i3/p350
|
Statistics & downloads: |
Abstract page: | 515 | Full-text PDF : | 217 | References: | 64 | First page: | 3 |
|