Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 14–46
DOI: https://doi.org/10.4213/tmf2020
(Mi tmf2020)
 

This article is cited in 12 scientific papers (total in 12 papers)

Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra

D. I. Gurevicha, P. N. Pyatovbc, P. A. Saponovd

a Université de Valenciennes et du Hainaut-Cambrésis
b Joint Institute for Nuclear Research
c Max Planck Institute for Mathematics
d Institute for High Energy Physics
References:
Abstract: We continue the study of quantum matrix algebras of the $GL(m|n)$ type. We find three alternative forms of the Cayley–Hamilton identity; most importantly, this identity can be represented in a factored form. The factorization allows naturally dividing the spectrum of a quantum supermatrix into subsets of “even” and “odd” eigenvalues. This division leads to a parameterization of the characteristic subalgebra (the subalgebra of spectral invariants) in terms of supersymmetric polynomials in the eigenvalues of the quantum matrix. Our construction is based on two auxiliary results, which are independently interesting. First, we derive the multiplication rule for Schur functions $s_\lambda(M)$, that form a linear basis of the characteristic subalgebra of a Hecke-type quantum matrix algebra; the structure constants in this basis coincide with the Littlewood–Richardson coefficients. Second, we prove a number of bilinear relations in the graded ring $\Lambda$ of symmetric functions of countably many variables.
Keywords: quantum groups, supermatrices, Cayley–Hamilton theorem, Littlewood–Richardson rule.
Received: 21.09.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 460–485
DOI: https://doi.org/10.1007/s11232-006-0054-0
Bibliographic databases:
Language: Russian
Citation: D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra”, TMF, 147:1 (2006), 14–46; Theoret. and Math. Phys., 147:1 (2006), 460–485
Citation in format AMSBIB
\Bibitem{GurPyaSap06}
\by D.~I.~Gurevich, P.~N.~Pyatov, P.~A.~Saponov
\paper Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 14--46
\mathnet{http://mi.mathnet.ru/tmf2020}
\crossref{https://doi.org/10.4213/tmf2020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254713}
\zmath{https://zbmath.org/?q=an:1177.17013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..460G}
\elib{https://elibrary.ru/item.asp?id=9200330}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 460--485
\crossref{https://doi.org/10.1007/s11232-006-0054-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900002}
\elib{https://elibrary.ru/item.asp?id=13518836}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645974573}
Linking options:
  • https://www.mathnet.ru/eng/tmf2020
  • https://doi.org/10.4213/tmf2020
  • https://www.mathnet.ru/eng/tmf/v147/i1/p14
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:693
    Full-text PDF :337
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024