Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 14–46
DOI: https://doi.org/10.4213/tmf2020
(Mi tmf2020)
 

This article is cited in 15 scientific papers (total in 15 papers)

Quantum matrix algebras of the GL(m|n) type: The structure and spectral parameterization of the characteristic subalgebra

D. I. Gurevicha, P. N. Pyatovbc, P. A. Saponovd

a Université de Valenciennes et du Hainaut-Cambrésis
b Joint Institute for Nuclear Research
c Max Planck Institute for Mathematics
d Institute for High Energy Physics
References:
Abstract: We continue the study of quantum matrix algebras of the GL(m|n) type. We find three alternative forms of the Cayley–Hamilton identity; most importantly, this identity can be represented in a factored form. The factorization allows naturally dividing the spectrum of a quantum supermatrix into subsets of “even” and “odd” eigenvalues. This division leads to a parameterization of the characteristic subalgebra (the subalgebra of spectral invariants) in terms of supersymmetric polynomials in the eigenvalues of the quantum matrix. Our construction is based on two auxiliary results, which are independently interesting. First, we derive the multiplication rule for Schur functions sλ(M), that form a linear basis of the characteristic subalgebra of a Hecke-type quantum matrix algebra; the structure constants in this basis coincide with the Littlewood–Richardson coefficients. Second, we prove a number of bilinear relations in the graded ring Λ of symmetric functions of countably many variables.
Keywords: quantum groups, supermatrices, Cayley–Hamilton theorem, Littlewood–Richardson rule.
Received: 21.09.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 460–485
DOI: https://doi.org/10.1007/s11232-006-0054-0
Bibliographic databases:
Language: Russian
Citation: D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Quantum matrix algebras of the GL(m|n) type: The structure and spectral parameterization of the characteristic subalgebra”, TMF, 147:1 (2006), 14–46; Theoret. and Math. Phys., 147:1 (2006), 460–485
Citation in format AMSBIB
\Bibitem{GurPyaSap06}
\by D.~I.~Gurevich, P.~N.~Pyatov, P.~A.~Saponov
\paper Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 14--46
\mathnet{http://mi.mathnet.ru/tmf2020}
\crossref{https://doi.org/10.4213/tmf2020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254713}
\zmath{https://zbmath.org/?q=an:1177.17013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..460G}
\elib{https://elibrary.ru/item.asp?id=9200330}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 460--485
\crossref{https://doi.org/10.1007/s11232-006-0054-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900002}
\elib{https://elibrary.ru/item.asp?id=13518836}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645974573}
Linking options:
  • https://www.mathnet.ru/eng/tmf2020
  • https://doi.org/10.4213/tmf2020
  • https://www.mathnet.ru/eng/tmf/v147/i1/p14
  • This publication is cited in the following 15 articles:
    1. Dimitry Gurevich, Pavel Saponov, “Generalized Harish-Chandra morphism on Reflection Equation algebras”, Journal of Geometry and Physics, 2025, 105435  crossref
    2. Dimitry Gurevich, Pavel Saponov, “Quantum Schur–Weyl Duality and q-Frobenius Formula Related to Reflection Equation Algebras”, International Mathematics Research Notices, 2025:3 (2025)  crossref
    3. Sidarth Erat, Arun S. Kannan, Shihan Kanungo, “Mixed Tensor Products, Capelli Berezinians, and Newton's Formula for gl(m|n)”, Transformation Groups, 2025  crossref
    4. Ogievetsky O. Pyatov P., “Quantum Matrix Algebras of Bmw Type: Structure of the Characteristic Subalgebra”, J. Geom. Phys., 162 (2021), 104086  crossref  mathscinet  isi
    5. Ogievetsky O. Pyatov P., “Cayley-Hamilton Theorem For Symplectic Quantum Matrix Algebras”, J. Geom. Phys., 165 (2021), 104211  crossref  mathscinet  isi
    6. Gurevich D. Saponov P., “Braided Algebras and their Applications to Noncommutative Geometry”, Adv. Appl. Math., 51:2 (2013), 228–253  crossref  mathscinet  zmath  isi  elib  scopus
    7. Lehrer G.I., Zhang H., Zhang R.B., “A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory”, Comm Math Phys, 301:1 (2011), 131–174  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Gurevich D., Pyatov P., Saponov P., “Braided differential operators on quantum algebras”, J Geom Phys, 61:8 (2011), 1485–1501  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    9. Gurevich D., Pyatov P., Saponov P., “Bilinear identities on Schur symmetric functions”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 31–48  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    10. Gurevich D., Saponov P., “Generic super-orbits in gl(m|n) and their braided counterparts”, J. Geom. Phys., 60:10 (2010), 1411–1423  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Spectral parameterization for power sums of a quantum supermatrix”, Theoret. and Math. Phys., 159:2 (2009), 587–597  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Isaev, AP, “Spectral Extension of the Quantum Group Cotangent Bundle”, Communications in Mathematical Physics, 288:3 (2009), 1137  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    13. Gurevich, D, “Braided affine geometry and q-analogs of wave operators”, Journal of Physics A-Mathematical and Theoretical, 42:31 (2009), 313001  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    14. D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Representation theory of (modified) Reflection Equation Algebra of GL(m|n) type”, St. Petersburg Math. J., 20:2 (2009), 213–253  mathnet  crossref  mathscinet  zmath  isi
    15. Hai PH, Kriegk B, Lorenz M, “N-homogeneous superalgebras”, Journal of Noncommutative Geometry, 2:1 (2008), 1–51  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:750
    Full-text PDF :351
    References:93
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025