Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 47–57
DOI: https://doi.org/10.4213/tmf2021
(Mi tmf2021)
 

This article is cited in 9 scientific papers (total in 9 papers)

Bound states of a system of two fermions on a one-dimensional lattice

Zh. I. Abdullaev

A. Navoi Samarkand State University
Full-text PDF (191 kB) Citations (9)
References:
Abstract: We consider the Hamiltonian of a system of two fermions on a one-dimensional integer lattice. We prove that the number of bound states $N(k)$ is a nondecreasing function of the total quasimomentum of the system $k\in[0,\pi]$. We describe the set of discontinuity points of $N(k)$ and evaluate the jump $N(k+0)-N(k)$ at the discontinuity points. We establish that the bound-state energy $z_n(k)$ increases as the total quasimomentum $k\in[0,\pi]$ increases.
Keywords: Hamiltonian, bound state, total quasimomentum, Schrödinger operator, eigenvalue, resonance, Birman–Schwinger principle.
Received: 06.06.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 486–495
DOI: https://doi.org/10.1007/s11232-006-0055-z
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, “Bound states of a system of two fermions on a one-dimensional lattice”, TMF, 147:1 (2006), 47–57; Theoret. and Math. Phys., 147:1 (2006), 486–495
Citation in format AMSBIB
\Bibitem{Abd06}
\by Zh.~I.~Abdullaev
\paper Bound states of a~system of two fermions on a~one-dimensional lattice
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 47--57
\mathnet{http://mi.mathnet.ru/tmf2021}
\crossref{https://doi.org/10.4213/tmf2021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254714}
\zmath{https://zbmath.org/?q=an:1177.81111}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..486A}
\elib{https://elibrary.ru/item.asp?id=9200331}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 486--495
\crossref{https://doi.org/10.1007/s11232-006-0055-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646012009}
Linking options:
  • https://www.mathnet.ru/eng/tmf2021
  • https://doi.org/10.4213/tmf2021
  • https://www.mathnet.ru/eng/tmf/v147/i1/p47
  • This publication is cited in the following 9 articles:
    1. J. I. Abdullaev, Sh. H. Ergashova, “Eigenvalues of the Schrödinger Operator Corresponding to a System of Three Fermions on a One Dimensional Lattice”, Lobachevskii J Math, 45:8 (2024), 3821  crossref
    2. J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828  crossref
    3. J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728  crossref
    4. Abdullaev I J., Khalkhuzhaev A.M., Usmonov L.S., “Monotonicity of the Eigenvalues of the Two-Particle Schrodinger Operatoron a Lattice”, Nanosyst.-Phys. Chem. Math., 12:6 (2021), 657–663  crossref  isi
    5. J.I. Abdullaev, Sh.H. Ergashova, Y.S. Shotemirov, “Bound states of a system of two bosons with a spherically potential on a lattice”, J. Phys.: Conf. Ser., 2070:1 (2021), 012023  crossref
    6. Janikul Abdullaev, A. M. Toshturdiev, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 050008  crossref
    7. Zh. I. Abdullaev, K. D. Kuliev, “Bound states of a two-boson system on a two-dimensional lattice”, Theoret. and Math. Phys., 186:2 (2016), 231–250  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Abdullayev J., Mamirov B., “Bound states of the system of two fermions on the three-dimensional lattice”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012022  crossref  isi  scopus
    9. Zh. I. Abdullaev, I. A. Ikromov, “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 152:3 (2007), 1299–1312  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :287
    References:76
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025