Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 47–57
DOI: https://doi.org/10.4213/tmf2021
(Mi tmf2021)
 

This article is cited in 7 scientific papers (total in 7 papers)

Bound states of a system of two fermions on a one-dimensional lattice

Zh. I. Abdullaev

A. Navoi Samarkand State University
Full-text PDF (191 kB) Citations (7)
References:
Abstract: We consider the Hamiltonian of a system of two fermions on a one-dimensional integer lattice. We prove that the number of bound states $N(k)$ is a nondecreasing function of the total quasimomentum of the system $k\in[0,\pi]$. We describe the set of discontinuity points of $N(k)$ and evaluate the jump $N(k+0)-N(k)$ at the discontinuity points. We establish that the bound-state energy $z_n(k)$ increases as the total quasimomentum $k\in[0,\pi]$ increases.
Keywords: Hamiltonian, bound state, total quasimomentum, Schrödinger operator, eigenvalue, resonance, Birman–Schwinger principle.
Received: 06.06.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 486–495
DOI: https://doi.org/10.1007/s11232-006-0055-z
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, “Bound states of a system of two fermions on a one-dimensional lattice”, TMF, 147:1 (2006), 47–57; Theoret. and Math. Phys., 147:1 (2006), 486–495
Citation in format AMSBIB
\Bibitem{Abd06}
\by Zh.~I.~Abdullaev
\paper Bound states of a~system of two fermions on a~one-dimensional lattice
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 47--57
\mathnet{http://mi.mathnet.ru/tmf2021}
\crossref{https://doi.org/10.4213/tmf2021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254714}
\zmath{https://zbmath.org/?q=an:1177.81111}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..486A}
\elib{https://elibrary.ru/item.asp?id=9200331}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 486--495
\crossref{https://doi.org/10.1007/s11232-006-0055-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646012009}
Linking options:
  • https://www.mathnet.ru/eng/tmf2021
  • https://doi.org/10.4213/tmf2021
  • https://www.mathnet.ru/eng/tmf/v147/i1/p47
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :273
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024