Abstract:
We consider the Hamiltonian of a system of two fermions on a one-dimensional integer lattice. We prove that the number of bound states $N(k)$ is a nondecreasing function of the total quasimomentum of the system $k\in[0,\pi]$. We describe the set of discontinuity points of
$N(k)$ and evaluate the jump $N(k+0)-N(k)$ at the discontinuity points. We establish that the bound-state energy $z_n(k)$ increases as the total quasimomentum $k\in[0,\pi]$ increases.
Citation:
Zh. I. Abdullaev, “Bound states of a system of two fermions on a one-dimensional lattice”, TMF, 147:1 (2006), 47–57; Theoret. and Math. Phys., 147:1 (2006), 486–495
\Bibitem{Abd06}
\by Zh.~I.~Abdullaev
\paper Bound states of a~system of two fermions on a~one-dimensional lattice
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 47--57
\mathnet{http://mi.mathnet.ru/tmf2021}
\crossref{https://doi.org/10.4213/tmf2021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254714}
\zmath{https://zbmath.org/?q=an:1177.81111}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..486A}
\elib{https://elibrary.ru/item.asp?id=9200331}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 486--495
\crossref{https://doi.org/10.1007/s11232-006-0055-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646012009}
Linking options:
https://www.mathnet.ru/eng/tmf2021
https://doi.org/10.4213/tmf2021
https://www.mathnet.ru/eng/tmf/v147/i1/p47
This publication is cited in the following 9 articles:
J. I. Abdullaev, Sh. H. Ergashova, “Eigenvalues of the Schrödinger Operator Corresponding to a System of Three Fermions on a One Dimensional Lattice”, Lobachevskii J Math, 45:8 (2024), 3821
J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828
J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728
Abdullaev I J., Khalkhuzhaev A.M., Usmonov L.S., “Monotonicity of the Eigenvalues of the Two-Particle Schrodinger Operatoron a Lattice”, Nanosyst.-Phys. Chem. Math., 12:6 (2021), 657–663
J.I. Abdullaev, Sh.H. Ergashova, Y.S. Shotemirov, “Bound states of a system of two bosons with a spherically potential on a lattice”, J. Phys.: Conf. Ser., 2070:1 (2021), 012023
Janikul Abdullaev, A. M. Toshturdiev, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 050008
Zh. I. Abdullaev, K. D. Kuliev, “Bound states of a two-boson system on a two-dimensional lattice”, Theoret. and Math. Phys., 186:2 (2016), 231–250
Abdullayev J., Mamirov B., “Bound states of the system of two fermions on the three-dimensional lattice”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012022
Zh. I. Abdullaev, I. A. Ikromov, “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 152:3 (2007), 1299–1312