Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 3–13
DOI: https://doi.org/10.4213/tmf2019
(Mi tmf2019)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bäcklund correspondences for evolution equations in a multidimensional space

V. V. Zharinov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (167 kB) Citations (3)
References:
Abstract: Our objective is to develop a calculation technique that allows performing an effective algebro-geometric (group) analysis of partial differential equations with arbitrarily many independent variables. We completely describe an important class of multidimensional evolution equations admitting Bäcklund correspondences of a given form. In particular, this class is found to be rather wide, although it turns out to be somewhat richer in the one-dimensional case because the requirement that mixed derivatives be equal is absent.
Keywords: Bäcklund correspondences, evolution systems, differential constraints.
Received: 21.11.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 449–459
DOI: https://doi.org/10.1007/s11232-006-0053-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Zharinov, “Bäcklund correspondences for evolution equations in a multidimensional space”, TMF, 147:1 (2006), 3–13; Theoret. and Math. Phys., 147:1 (2006), 449–459
Citation in format AMSBIB
\Bibitem{Zha06}
\by V.~V.~Zharinov
\paper B\"acklund correspondences for evolution equations in a~multidimensional space
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/tmf2019}
\crossref{https://doi.org/10.4213/tmf2019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254712}
\zmath{https://zbmath.org/?q=an:1177.37074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..449Z}
\elib{https://elibrary.ru/item.asp?id=9200329}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 449--459
\crossref{https://doi.org/10.1007/s11232-006-0053-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900001}
\elib{https://elibrary.ru/item.asp?id=13523151}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645983969}
Linking options:
  • https://www.mathnet.ru/eng/tmf2019
  • https://doi.org/10.4213/tmf2019
  • https://www.mathnet.ru/eng/tmf/v147/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :243
    References:59
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024