Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 1, Pages 44–61
DOI: https://doi.org/10.4213/tmf1946
(Mi tmf1946)
 

This article is cited in 86 scientific papers (total in 86 papers)

Positons: Slowly Decreasing Analogues of Solitons

V. B. Matveevabc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Max Planck Institute for Mathematics
c Université de Bourgogne
References:
Abstract: We present an introduction to positon theory, almost never covered in the Russian scientific literature. Positons are long-range analogues of solitons and are slowly decreasing, oscillating solutions of nonlinear integrable equations of the KdV type. Positon and soliton-positon solutions of the KdV equation, first constructed and analyzed about a decade ago, were then constructed for several other models: for the mKdV equation, the Toda chain, the NS equation, as well as the sinh-Gordon equation and its lattice analogue. Under a proper choice of the scattering data, the one-positon and multipositon potentials have a remarkable property: the corresponding reflection coefficient is zero, but the transmission coefficient is unity (as is known, the latter does not hold for the standard short-range reflectionless potentials).
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 1, Pages 483–497
DOI: https://doi.org/10.1023/A:1015149618529
Bibliographic databases:
Language: Russian
Citation: V. B. Matveev, “Positons: Slowly Decreasing Analogues of Solitons”, TMF, 131:1 (2002), 44–61; Theoret. and Math. Phys., 131:1 (2002), 483–497
Citation in format AMSBIB
\Bibitem{Mat02}
\by V.~B.~Matveev
\paper Positons: Slowly Decreasing Analogues of Solitons
\jour TMF
\yr 2002
\vol 131
\issue 1
\pages 44--61
\mathnet{http://mi.mathnet.ru/tmf1946}
\crossref{https://doi.org/10.4213/tmf1946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931054}
\zmath{https://zbmath.org/?q=an:1029.37051}
\elib{https://elibrary.ru/item.asp?id=13410188}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 1
\pages 483--497
\crossref{https://doi.org/10.1023/A:1015149618529}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175678000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1946
  • https://doi.org/10.4213/tmf1946
  • https://www.mathnet.ru/eng/tmf/v131/i1/p44
    Erratum
    This publication is cited in the following 86 articles:
    1. Shuzhi Liu, Deqin Qiu, “The exploding solitons of the sine–Gordon equation”, Applied Mathematics Letters, 160 (2025), 109314  crossref
    2. Jiaqing Shan, Maohua Li, “The breather, breather-positon, rogue wave for the reverse space–time nonlocal short pulse equation in nonzero background”, Wave Motion, 133 (2025), 103448  crossref
    3. Ping Li, Jingsong He, Maohua Li, “The higher-order positon and breather-positon solutions for the complex short pulse equation”, Nonlinear Dyn, 112:12 (2024), 10239  crossref
    4. Shuzhi Liu, Deqin Qiu, “WITHDRAWN: Dynamics of solitons for the sine–Gordon equation”, Results in Physics, 2024, 107798  crossref
    5. Tao Xu, Jinyan Zhu, “Soliton molecules and breather positon solutions for the coupled modified nonlinear Schrödinger equation”, Wave Motion, 129 (2024), 103347  crossref
    6. K. Thulasidharan, N. Vishnu Priya, S. Monisha, M. Senthilvelan, “Predicting positon solutions of a family of nonlinear Schrödinger equations through deep learning algorithm”, Physics Letters A, 511 (2024), 129551  crossref
    7. S. Monisha, M. Senthilvelan, Springer Proceedings in Physics, 405, Proceedings of the 2nd International Conference on Nonlinear Dynamics and Applications (ICNDA 2024), Volume 1, 2024, 139  crossref
    8. Jiaqing Shan, Maohua Li, “The dynamic of the positons for the reverse space–time nonlocal short pulse equation”, Physica D: Nonlinear Phenomena, 470 (2024), 134419  crossref
    9. Runjia LUO, Guoquan ZHOU, “Double-Pole Solution and Soliton-Antisoliton Pair Solution of MNLSE/DNLSE Based upon Hirota Method”, Wuhan Univ. J. Nat. Sci., 29:5 (2024), 430  crossref
    10. S. Monisha, N. Vishnu Priya, M. Senthilvelan, “Degenerate soliton solutions and their interactions in coupled Hirota equation with trivial and nontrivial background”, Nonlinear Dyn, 111:23 (2023), 21877  crossref
    11. Kannan Manikandan, Nurzhan Serikbayev, Shunmuganathan P. Vijayasree, Devarasu Aravinthan, “Controlling Matter-Wave Smooth Positons in Bose–Einstein Condensates”, Symmetry, 15:8 (2023), 1585  crossref
    12. Alexei Rybkin, “Norming Constants of Embedded Bound States and Bounded Positon Solutions of the Korteweg-de Vries Equation”, Commun. Math. Phys., 401:3 (2023), 2433  crossref
    13. K. Manikandan, N. Serikbayev, M. Manigandan, M. Sabareeshwaran, “Dynamical evolutions of optical smooth positons in variable coefficient nonlinear Schrödinger equation with external potentials”, Optik, 288 (2023), 171203  crossref
    14. Kazuyuki Yagasaki, “Integrability of the Zakharov-Shabat Systems by Quadrature”, Commun. Math. Phys., 400:1 (2023), 315  crossref
    15. Feng Yuan, Behzad Ghanbari, “Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg–de Vries equations”, Chinese Phys. B, 32:4 (2023), 040201  crossref
    16. Santanu Raut, Wen-Xiu Ma, Ranjan Barman, Subrata Roy, “A non-autonomous Gardner equation and its integrability: Solitons, positons and breathers”, Chaos, Solitons & Fractals, 176 (2023), 114089  crossref
    17. Deqin Qiu, Yongshuai Zhang, “Classification of solutions of the generalized mixed nonlinear Schrödinger equation”, Theoret. and Math. Phys., 211:3 (2022), 838–855  mathnet  crossref  crossref  mathscinet  adsnasa
    18. Sergei Grudsky, Alexei Rybkin, “The inverse scattering transform for weak Wigner–von Neumann type potentials *”, Nonlinearity, 35:5 (2022), 2175  crossref
    19. Efim Pelinovsky, Tatiana Talipova, Ekaterina Didenkulova, “Rational Solitons in the Gardner-Like Models”, Fluids, 7:9 (2022), 294  crossref
    20. N. Vishnu Priya, S. Monisha, M. Senthilvelan, Govindan Rangarajan, “Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 137:5 (2022)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:757
    Full-text PDF :349
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025