Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 1, Pages 26–43
DOI: https://doi.org/10.4213/tmf1945
(Mi tmf1945)
 

This article is cited in 7 scientific papers (total in 7 papers)

Casimir Effect and Quantum Field Theory in Dielectrics

B. N. Marachevsky

Saint-Petersburg State University
Full-text PDF (739 kB) Citations (7)
References:
Abstract: We apply the path-integral method in the coordinate space to the Casimir effect. We consider several examples: the Casimir energy of a dilute dielectric ball with dispersion, the Casimir energy of a polarized particle near a dielectric ball, and the Casimir energy of a polarized particle inside a perfectly conducting wedge-shaped cavity. The renormalization group equation for the $\Phi^4$ model is obtained in the coordinate space by a new method that emphasizes the relation between the background field method and the Casimir energy.
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 1, Pages 468–482
DOI: https://doi.org/10.1023/A:1015197501691
Bibliographic databases:
Language: Russian
Citation: B. N. Marachevsky, “Casimir Effect and Quantum Field Theory in Dielectrics”, TMF, 131:1 (2002), 26–43; Theoret. and Math. Phys., 131:1 (2002), 468–482
Citation in format AMSBIB
\Bibitem{Mar02}
\by B.~N.~Marachevsky
\paper Casimir Effect and Quantum Field Theory in Dielectrics
\jour TMF
\yr 2002
\vol 131
\issue 1
\pages 26--43
\mathnet{http://mi.mathnet.ru/tmf1945}
\crossref{https://doi.org/10.4213/tmf1945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438611}
\zmath{https://zbmath.org/?q=an:1044.81091}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 1
\pages 468--482
\crossref{https://doi.org/10.1023/A:1015197501691}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175678000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1945
  • https://doi.org/10.4213/tmf1945
  • https://www.mathnet.ru/eng/tmf/v131/i1/p26
    Erratum
    This publication is cited in the following 7 articles:
    1. Giuseppe Bimonte, Thorsten Emig, “Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors”, Physics, 6:1 (2024), 194  crossref
    2. Thorsten Emig, “Surface scattering expansion for the Casimir-Polder interaction of a dielectric wedge”, Phys. Rev. A, 110:6 (2024)  crossref
    3. Stefan Yoshi Buhmann, Springer Tracts in Modern Physics, 247, Dispersion Forces I, 2012, 1  crossref
    4. Stefan Yoshi Buhmann, Springer Tracts in Modern Physics, 247, Dispersion Forces I, 2012, 147  crossref
    5. Buhmann, SY, “Universal Scaling Laws for Dispersion Interactions”, Physical Review Letters, 104:7 (2010), 070404  crossref  adsnasa  isi  elib  scopus  scopus
    6. Marachevsky V.N., Pis'mak Yu.M., “Casimir-Polder effect for a plane with Chern–Simons interaction”, Physical Review D, 81:6 (2010), 065005  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    7. Buhmann, SY, “Dispersion forces in macroscopic quantum electrodynamics”, Progress in Quantum Electronics, 31:2 (2007), 51  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:801
    Full-text PDF :367
    References:105
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025