1. Mateos Guilarte J. Plyushchay M.S., “Perfectly Invisible Pt-Symmetric Zero-Gap Systems, Conformal Field Theoretical Kinks, and Exotic Nonlinear Supersymmetry”, J. High Energy Phys., 2017, no. 12, 061  crossref  mathscinet  isi  scopus  scopus
  2. Xing Q., Wang L., Mihalache D., Porsezian K., He J., “Construction of Rational Solutions of the Real Modified Korteweg-de Vries Equation From Its Periodic Solutions”, Chaos, 27:5 (2017), 053102  crossref  mathscinet  zmath  isi  scopus  scopus
  3. Zhang H.-Q., Liu X.-L., Wen L.-L., “Soliton, Breather, and Rogue Wave For a (2+1)-Dimensional Nonlinear Schrodinger Equation”, Z. Naturfors. Sect. A-J. Phys. Sci., 71:2 (2016), 95–101  crossref  isi  scopus  scopus
  4. Yves Grandati, Christiane Quesne, “Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials”, SIGMA, 11 (2015), 061, 26 pp.  mathnet  crossref  mathscinet
  5. Zhang Ch., Li Ch., He J., “Darboux Transformation and Rogue Waves of the Kundu-Nonlinear Schrodinger Equation”, Math. Meth. Appl. Sci., 38:11 (2015), 2411–2425  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  6. Sergei Grudsky, Alexei Rybkin, “Soliton Theory and Hankel Operators”, SIAM J. Math. Anal., 47:3 (2015), 2283  crossref
  7. Grudsky S., Rybkin A., “On Positive Type Initial Profiles For the KdV Equation”, Proc. Amer. Math. Soc., 142:6 (2014), 2079–2086  crossref  mathscinet  zmath  isi  scopus  scopus
  8. Grandati Y., “A Short Proof of the Gaillard-Matveev Theorem Based on Shape Invariance Arguments”, Phys. Lett. A, 378:26-27 (2014), 1755–1759  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  9. Li Ch., He J., Porseizan K., “Rogue Waves of the Hirota and the Maxwell-Bloch Equations”, Phys. Rev. E, 87:1 (2013), 012913  crossref  adsnasa  isi  elib  scopus  scopus
  10. Guo B., Ling L., Liu Q.P., “High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrodinger Equations”, Stud. Appl. Math., 130:4 (2013), 317–344  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  11. Yi Lin, Chuanzhong Li, Jingsong He, “Nonsingular Positon Solutions of a Variable-Coefficient Modified KdV Equation”, OJAppS, 03:01 (2013), 102  crossref
  12. Guo B., Ling L., Liu Q.P., “Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions”, Phys Rev E, 85:2, Part 2 (2012), 026607  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
  13. Su J., Xu W., Xu G., Gao L., “Negaton, positon and complexiton solutions of the nonisospectral KdV equations with self-consistent sources”, Commun Nonlinear Sci Numer Simul, 17:1 (2012), 110–118  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  14. Brezhnev Yu.V., “Spectral/Quadrature Duality: Picard-Vessiot Theory and Finite-Gap Potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 1–31  crossref  mathscinet  zmath  isi
  15. Rybkin A., “The Hirota tau-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half line”, Nonlinearity, 24:10 (2011), 2953–2990  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  16. Yao Yu., Huang Y., Dong G., Zeng Yu., “The new integrable deformations of a short pulse equation and sine-Gordon equation, and their solutions”, J. Phys. A: Math. Theor., 44:6 (2011), 065201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  17. Su J., Xu W., Gao L., Xu G., “Complexiton solutions of the mKdV equation with self-consistent sources”, Physics Letters A, 374:13–14 (2010), 1457–1463  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  18. Huang Y.e-Hui, Yao Y.u-Qin, Zeng Y.un-Bo, “On Camassa-Holm Equation with Self-Consistent Sources and Its Solutions”, Communications in Theoretical Physics, 53:3 (2010), 403–412  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  19. Zhang Da-jun, Jian-bing Zhang, Qing Shen, “A limit symmetry of the Korteweg–de Vries equation and its applications”, Theoret. and Math. Phys., 163:2 (2010), 634–643  mathnet  crossref  crossref  adsnasa  isi
  20. Sakhnovich A., “On the GBDT Version of the Backlund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory”, Mathematical Modelling of Natural Phenomena, 5:4 (2010), 340–389  crossref  mathscinet  zmath  isi  scopus  scopus
Previous
1
2
3
4
5
Next