Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 122, Number 3, Pages 468–481
DOI: https://doi.org/10.4213/tmf1938
(Mi tmf1938)
 

The Coleman–Weinberg effective potential in superconductivity theory

R. M. Quicka, S. G. Sharapovba

a University of Pretoria
b N. N. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
References:
Abstract: A quasi-two-dimensional nonrelativistic four-Fermi theory is studied at finite temperatures in the next-to-leading-order approximation using the Coleman–Weinberg effective potential. The appearance of an imaginary part in the one-loop correction is discussed in the context of condensed matter theory where it is called the Thouless criterion for superconductivity. By reference to the appropriate modified effective potential, the Thouless criterion can be revised to obtain a critical temperature in the next-to-leading order that, unlike the mean-field temperature, tends to zero in the two-dimensional limit in agreement with the Coleman theorem.
Received: 20.11.1998
Revised: 01.04.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 122, Issue 3, Pages 390–401
DOI: https://doi.org/10.1007/BF02551252
Bibliographic databases:
Language: Russian
Citation: R. M. Quick, S. G. Sharapov, “The Coleman–Weinberg effective potential in superconductivity theory”, TMF, 122:3 (2000), 468–481; Theoret. and Math. Phys., 122:3 (2000), 390–401
Citation in format AMSBIB
\Bibitem{QuiSha00}
\by R.~M.~Quick, S.~G.~Sharapov
\paper The Coleman--Weinberg effective potential in superconductivity theory
\jour TMF
\yr 2000
\vol 122
\issue 3
\pages 468--481
\mathnet{http://mi.mathnet.ru/tmf1938}
\crossref{https://doi.org/10.4213/tmf1938}
\zmath{https://zbmath.org/?q=an:0981.82031}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 3
\pages 390--401
\crossref{https://doi.org/10.1007/BF02551252}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087497000012}
Linking options:
  • https://www.mathnet.ru/eng/tmf1938
  • https://doi.org/10.4213/tmf1938
  • https://www.mathnet.ru/eng/tmf/v122/i3/p468
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :187
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024