Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 122, Number 3, Pages 456–467
DOI: https://doi.org/10.4213/tmf580
(Mi tmf580)
 

Dispersion of Lagrangian trajectories in a random large-scale velocity field

V. R. Kogan

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: We study the distribution of the distance $R(t)$ between two Lagrangian trajectories in a spatially smooth turbulent velocity field with an arbitrary correlation time and a non-Gaussian distribution. There are two dimensionless parameters, the degree of deviation from the Gaussian distribution $\alpha$ and $\beta=\tau D$, where $\tau$ is the velocity correlation time and $D$ is a characteristic velocity gradient. Asymptotically, $R(t)$ has a lognormal distribution characterized by the mean runaway velocity $\bar\lambda$ and the dispersion $\Delta$. We use the method of higher space dimensions $d$ to estimate $\bar\lambda$ and $\Delta$ for different values of $\alpha$ and $\beta$. It was shown previously that $\bar\lambda\sim D$ for $\beta\ll1$ and $\bar\lambda\sim\sqrt{D/\tau}$ for $\beta\gg1$. The estimate of $\Delta$ is then nonuniversal and depends on details of the two-point velocity correlator. Higher-order velocity correlators give an additional contribution to $\Delta$ estimated as $\alpha D^2\tau$ for $\beta\ll1$ and $\alpha\beta/\tau$ for $\beta\gg1$. For $\alpha$ above some critical value $\alpha_\mathrm{cr}$, the values of $\bar\lambda$ and $\Delta$ are determined by higher irreducible correlators of the velocity gradient, and our approach loses its applicability. This critical value can be estimated as $\alpha_\mathrm{cr}\sim\beta^{-1}$ for $\beta\ll1$ and $\alpha_\mathrm{cr}\sim \beta^{-1/2}$ for $\beta\gg1$.
Received: 09.04.1999
Revised: 28.06.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 122, Issue 3, Pages 380–389
DOI: https://doi.org/10.1007/BF02551251
Bibliographic databases:
Language: Russian
Citation: V. R. Kogan, “Dispersion of Lagrangian trajectories in a random large-scale velocity field”, TMF, 122:3 (2000), 456–467; Theoret. and Math. Phys., 122:3 (2000), 380–389
Citation in format AMSBIB
\Bibitem{Kog00}
\by V.~R.~Kogan
\paper Dispersion of Lagrangian trajectories in a random large-scale velocity field
\jour TMF
\yr 2000
\vol 122
\issue 3
\pages 456--467
\mathnet{http://mi.mathnet.ru/tmf580}
\crossref{https://doi.org/10.4213/tmf580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774585}
\zmath{https://zbmath.org/?q=an:0995.76035}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 3
\pages 380--389
\crossref{https://doi.org/10.1007/BF02551251}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087497000011}
Linking options:
  • https://www.mathnet.ru/eng/tmf580
  • https://doi.org/10.4213/tmf580
  • https://www.mathnet.ru/eng/tmf/v122/i3/p456
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :181
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024