Abstract:
An analytic method, which Wu called the “Bochner technique”, has been used for fifty years to describe global Riemannian and Kдhler geometries. We use this method to describe conformally Killing vector fields and harmonic timelike vector fields on a Lorentzian manifold and to study hydrodynamic models of the Universe, the existence of closed spacelike sections, and the possibility of fibering Lorentzian manifolds.
\Bibitem{Ste00}
\by S.~E.~Stepanov
\paper An analytic method in general relativity
\jour TMF
\yr 2000
\vol 122
\issue 3
\pages 482--496
\mathnet{http://mi.mathnet.ru/tmf581}
\crossref{https://doi.org/10.4213/tmf581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774586}
\zmath{https://zbmath.org/?q=an:0971.83009}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 3
\pages 402--414
\crossref{https://doi.org/10.1007/BF02551253}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087497000013}
Linking options:
https://www.mathnet.ru/eng/tmf581
https://doi.org/10.4213/tmf581
https://www.mathnet.ru/eng/tmf/v122/i3/p482
This publication is cited in the following 8 articles:
Stepanov S.E., “A Contribution to the Geometry in the Large of Conformal Diffeomorphisms”, J. Geom. Phys., 143 (2019), 1–10
S. E. Stepanov, I. E. Denezhkina, A. V. Ovchinnikov, “On Geometric Analysis of the Dynamics of Volumetric Expansion and Its Applications to General Relativity”, Journal of Mathematical Sciences, 245:5 (2020), 659–668
Stepanov S.E., Mikes J., “the Generalized Landau-Raychaudhuri Equation and Its Applications”, Int. J. Geom. Methods Mod. Phys., 12:8 (2015), 1560026
S. E. Stepanov, I. A. Gordeeva, “Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann–Cartan Manifold”, Math. Notes, 87:2 (2010), 248–257
Ezin, JP, “Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary”, Kodai Mathematical Journal, 30:1 (2007), 41
Francisco J. Palomo, Alfonso Romero, Handbook of Differential Geometry, 2, 2006, 513
S. E. Stepanov, “Vanishing theorems in affine, Riemannian, and Lorenz geometries”, J. Math. Sci., 141:1 (2007), 929–964
Romero, A, “Projective vector fields on Lorentzian manifolds”, Geometriae Dedicata, 93:1 (2002), 95