Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 122, Number 3, Pages 482–496
DOI: https://doi.org/10.4213/tmf581
(Mi tmf581)
 

This article is cited in 8 scientific papers (total in 8 papers)

An analytic method in general relativity

S. E. Stepanov

Vladimir State Pedagogical University
Full-text PDF (261 kB) Citations (8)
References:
Abstract: An analytic method, which Wu called the “Bochner technique”, has been used for fifty years to describe global Riemannian and Kдhler geometries. We use this method to describe conformally Killing vector fields and harmonic timelike vector fields on a Lorentzian manifold and to study hydrodynamic models of the Universe, the existence of closed spacelike sections, and the possibility of fibering Lorentzian manifolds.
Received: 24.12.1998
Revised: 29.06.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 122, Issue 3, Pages 402–414
DOI: https://doi.org/10.1007/BF02551253
Bibliographic databases:
Language: Russian
Citation: S. E. Stepanov, “An analytic method in general relativity”, TMF, 122:3 (2000), 482–496; Theoret. and Math. Phys., 122:3 (2000), 402–414
Citation in format AMSBIB
\Bibitem{Ste00}
\by S.~E.~Stepanov
\paper An analytic method in general relativity
\jour TMF
\yr 2000
\vol 122
\issue 3
\pages 482--496
\mathnet{http://mi.mathnet.ru/tmf581}
\crossref{https://doi.org/10.4213/tmf581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774586}
\zmath{https://zbmath.org/?q=an:0971.83009}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 3
\pages 402--414
\crossref{https://doi.org/10.1007/BF02551253}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087497000013}
Linking options:
  • https://www.mathnet.ru/eng/tmf581
  • https://doi.org/10.4213/tmf581
  • https://www.mathnet.ru/eng/tmf/v122/i3/p482
  • This publication is cited in the following 8 articles:
    1. Stepanov S.E., “A Contribution to the Geometry in the Large of Conformal Diffeomorphisms”, J. Geom. Phys., 143 (2019), 1–10  crossref  isi
    2. S. E. Stepanov, I. E. Denezhkina, A. V. Ovchinnikov, “On Geometric Analysis of the Dynamics of Volumetric Expansion and Its Applications to General Relativity”, Journal of Mathematical Sciences, 245:5 (2020), 659–668  mathnet  crossref  mathscinet  zmath
    3. Stepanov S.E., Mikes J., “the Generalized Landau-Raychaudhuri Equation and Its Applications”, Int. J. Geom. Methods Mod. Phys., 12:8 (2015), 1560026  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    4. S. E. Stepanov, I. A. Gordeeva, “Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann–Cartan Manifold”, Math. Notes, 87:2 (2010), 248–257  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Ezin, JP, “Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary”, Kodai Mathematical Journal, 30:1 (2007), 41  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. Francisco J. Palomo, Alfonso Romero, Handbook of Differential Geometry, 2, 2006, 513  crossref
    7. S. E. Stepanov, “Vanishing theorems in affine, Riemannian, and Lorenz geometries”, J. Math. Sci., 141:1 (2007), 929–964  mathnet  crossref  mathscinet  zmath  elib
    8. Romero, A, “Projective vector fields on Lorentzian manifolds”, Geometriae Dedicata, 93:1 (2002), 95  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :341
    References:117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025