|
This article is cited in 2 scientific papers (total in 2 papers)
Symmetries of Systems of the Hyperbolic Riccati Type
A. A. Bormisov, F. Kh. Mukminov Sterlitamak State Pedagogical Institute
Abstract:
Let $\mathfrak G=\bigoplus_{i\in\mathbb Z}\mathfrak G_i$ be a Kac–Moody algebra, $U(x,y)$ be a function defined in $\mathfrak G_{-1}$, and $a$ be a constant element of $\mathfrak G_1$. We prove that the equation $U_{xy}=\bigl[[U,a],U_x\bigr]$ has two symmetry hierarchies connected by a gauge transformation. In particular, the well-known Konno equation appears in the case of the algebra $A_1^{(1)}$. The corresponding symmetry hierarchies contain the nonlinear Schrödinger and the Heisenberg magnet equations.
Received: 05.10.2000
Citation:
A. A. Bormisov, F. Kh. Mukminov, “Symmetries of Systems of the Hyperbolic Riccati Type”, TMF, 127:1 (2001), 47–62; Theoret. and Math. Phys., 127:1 (2001), 446–459
Linking options:
https://www.mathnet.ru/eng/tmf448https://doi.org/10.4213/tmf448 https://www.mathnet.ru/eng/tmf/v127/i1/p47
|
|