Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 3, Pages 513–543
DOI: https://doi.org/10.4213/tmf1874
(Mi tmf1874)
 

dS–AdS Structures in Noncommutative Minkowski Spaces

M. A. Olshanetskyab, V.-B. K. Rogovc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b University of Aarhus
c Moscow State University of Railway Communications
References:
Abstract: We consider a family of noncommutative four-dimensional Minkowski spaces with the signature (1,3) and two types of spaces with the signature (2,2). The Minkowski spaces are defined by the common reflection equation and differ in anti-involutions. There exist two Casimir elements, and. xing one of them leads to the noncommutative “homogeneous” spaces H3, dS3, AdS3, and light cones. We present a semiclassical description of the Minkowski spaces. There are three compatible Poisson structures: quadratic, linear, and canonical. Quantizing the first leads to the Minkowski spaces. We introduce horospheric generators of the Minkowski spaces, and they lead to the horospheric description of H3, dS3, and AdS3. We construct irreducible representations of the Minkowski spaces H3 and dS3. We find eigenfunctions of the Klein–Gordon equation in terms of the horospheric generators of the Minkowski spaces, and they lead to eigenfunctions on H3, dS3, AdS3, and light cones.
Keywords: noncommutative geometry, Yang–Baxter equation, reflection equation, harmonic analysis on noncommutative spaces.
Received: 17.11.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 3, Pages 1315–1343
DOI: https://doi.org/10.1007/s11232-005-0162-2
Bibliographic databases:
Language: Russian
Citation: M. A. Olshanetsky, V.-B. K. Rogov, “dS–AdS Structures in Noncommutative Minkowski Spaces”, TMF, 144:3 (2005), 513–543; Theoret. and Math. Phys., 144:3 (2005), 1315–1343
Citation in format AMSBIB
\Bibitem{OlsRog05}
\by M.~A.~Olshanetsky, V.-B.~K.~Rogov
\paper dS--AdS Structures in Noncommutative Minkowski Spaces
\jour TMF
\yr 2005
\vol 144
\issue 3
\pages 513--543
\mathnet{http://mi.mathnet.ru/tmf1874}
\crossref{https://doi.org/10.4213/tmf1874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191845}
\zmath{https://zbmath.org/?q=an:1178.81260}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1315O}
\elib{https://elibrary.ru/item.asp?id=9155037}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 3
\pages 1315--1343
\crossref{https://doi.org/10.1007/s11232-005-0162-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232646400006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1874
  • https://doi.org/10.4213/tmf1874
  • https://www.mathnet.ru/eng/tmf/v144/i3/p513
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :191
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025