Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 3, Pages 492–512
DOI: https://doi.org/10.4213/tmf1873
(Mi tmf1873)
 

This article is cited in 1 scientific paper (total in 1 paper)

Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ

O. Yu. Shvedov

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (324 kB) Citations (1)
References:
Abstract: We consider an explicitly covariant formulation of the quantum field theory of the Maslov complex germ (semiclassical field theory) in the example of a scalar field. The main object in the theory is the – semiclassical bundle – whose base is the set of classical states and whose fibers are the spaces of states of the quantum theory in an external field. The respective semiclassical states occurring in the Maslov complex germ theory at a point and in the theory of Lagrangian manifolds with a complex germ are represented by points and surfaces in the “semiclassical bundle” space. We formulate semiclassical analogues of quantum field theory axioms and establish a relation between the covariant semiclassical theory and both the Hamiltonian formulation previously constructed and the axiomatic field theory constructions Schwinger sources, the Bogoliubov $S$-matrix, and the Lehmann–Symanzik–Zimmermann $R$-functions. We propose a new covariant formulation of classical field theory and a scheme of semiclassical quantization of fields that does not involve a postulated replacement of Poisson brackets with commutators.
Keywords: Maslov complex germ, axiomatic quantum field theory, Bogoliubov S-matrix, Lehmann–Symanzik–Zimmermann approach, theory of Schwinger sources, Pierls brackets.
Received: 16.09.2004
Revised: 18.03.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 3, Pages 1296–1314
DOI: https://doi.org/10.1007/s11232-005-0161-3
Bibliographic databases:
Language: Russian
Citation: O. Yu. Shvedov, “Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ”, TMF, 144:3 (2005), 492–512; Theoret. and Math. Phys., 144:3 (2005), 1296–1314
Citation in format AMSBIB
\Bibitem{Shv05}
\by O.~Yu.~Shvedov
\paper Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ
\jour TMF
\yr 2005
\vol 144
\issue 3
\pages 492--512
\mathnet{http://mi.mathnet.ru/tmf1873}
\crossref{https://doi.org/10.4213/tmf1873}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191844}
\zmath{https://zbmath.org/?q=an:1178.81173}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1296S}
\elib{https://elibrary.ru/item.asp?id=9155036}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 3
\pages 1296--1314
\crossref{https://doi.org/10.1007/s11232-005-0161-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232646400005}
\elib{https://elibrary.ru/item.asp?id=13483185}
Linking options:
  • https://www.mathnet.ru/eng/tmf1873
  • https://doi.org/10.4213/tmf1873
  • https://www.mathnet.ru/eng/tmf/v144/i3/p492
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:678
    Full-text PDF :228
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024