Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 3, Pages 544–554
DOI: https://doi.org/10.4213/tmf1875
(Mi tmf1875)
 

This article is cited in 10 scientific papers (total in 10 papers)

Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum

G. R. Yodgorova, M. I. Muminovb

a Uzbekistan Academy of Sciences, Samarkand Branch
b A. Navoi Samarkand State University
References:
Abstract: We consider a model operator acting in a subspace of a Fock space and obtain a symmetrized analogue of the Faddeev equation. For the operator considered, we describe the position and the structure of its essential spectrum.
Keywords: creation and annihilation operators, essential spectrum, positive operator, compact operator.
Received: 25.01.2005
Revised: 09.04.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 3, Pages 1344–1352
DOI: https://doi.org/10.1007/s11232-005-0163-1
Bibliographic databases:
Language: Russian
Citation: G. R. Yodgorov, M. I. Muminov, “Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum”, TMF, 144:3 (2005), 544–554; Theoret. and Math. Phys., 144:3 (2005), 1344–1352
Citation in format AMSBIB
\Bibitem{YodMum05}
\by G.~R.~Yodgorov, M.~I.~Muminov
\paper Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum
\jour TMF
\yr 2005
\vol 144
\issue 3
\pages 544--554
\mathnet{http://mi.mathnet.ru/tmf1875}
\crossref{https://doi.org/10.4213/tmf1875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191846}
\zmath{https://zbmath.org/?q=an:1178.81074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1344Y}
\elib{https://elibrary.ru/item.asp?id=9155038}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 3
\pages 1344--1352
\crossref{https://doi.org/10.1007/s11232-005-0163-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232646400007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1875
  • https://doi.org/10.4213/tmf1875
  • https://www.mathnet.ru/eng/tmf/v144/i3/p544
  • This publication is cited in the following 10 articles:
    1. Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61  mathscinet  zmath  isi
    2. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77  mathnet
    3. G. R. Yodgorov, F. Ismail, Z. I. Muminov, “A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space”, Sb. Math., 205:12 (2014), 1761–1774  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Zahriddin Muminov, Fudziah Ismail, Jamshid Rasulov, “The Faddeev Equation and the Essential Spectrum of a Model Operator Associated with the Hamiltonian of a Nonconserved Number of Particles”, Advances in Mathematical Physics, 2014 (2014), 1  crossref
    5. M. I. Muminov, U. R. Shodiev, “On the essential spectrum of a four-particle Schrödinger operator on a lattice”, Siberian Adv. Math., 21:4 (2011), 292–303  mathnet  crossref  mathscinet  elib
    6. T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, Theoret. and Math. Phys., 164:1 (2010), 883–895  mathnet  crossref  crossref  adsnasa  isi
    7. M. E. Muminov, U. R. Shodiev, “Spectral properties of a Hamiltonian of a four-particle system on a lattice”, Russian Math. (Iz. VUZ), 54:12 (2010), 27–37  mathnet  crossref  mathscinet
    8. Rasulov T.H., “Investigations of the essential spectrum of a Hamiltonian in Fock space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412  mathscinet  isi
    9. T. H. Rasulov, “Investigation of the spectrum of a model operator in a Fock space”, Theoret. and Math. Phys., 161:2 (2009), 1460–1470  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. T. H. Rasulov, “The Faddeev equation and the location of the essential spectrum of a model operator for several particles”, Russian Math. (Iz. VUZ), 52:12 (2008), 50–59  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :205
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025