Abstract:
We consider a model operator acting in a subspace of a Fock space and obtain a symmetrized analogue of the Faddeev equation. For the operator considered, we describe the position and the structure of its essential spectrum.
Citation:
G. R. Yodgorov, M. I. Muminov, “Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum”, TMF, 144:3 (2005), 544–554; Theoret. and Math. Phys., 144:3 (2005), 1344–1352
\Bibitem{YodMum05}
\by G.~R.~Yodgorov, M.~I.~Muminov
\paper Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum
\jour TMF
\yr 2005
\vol 144
\issue 3
\pages 544--554
\mathnet{http://mi.mathnet.ru/tmf1875}
\crossref{https://doi.org/10.4213/tmf1875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191846}
\zmath{https://zbmath.org/?q=an:1178.81074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1344Y}
\elib{https://elibrary.ru/item.asp?id=9155038}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 3
\pages 1344--1352
\crossref{https://doi.org/10.1007/s11232-005-0163-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232646400007}
Linking options:
https://www.mathnet.ru/eng/tmf1875
https://doi.org/10.4213/tmf1875
https://www.mathnet.ru/eng/tmf/v144/i3/p544
This publication is cited in the following 10 articles:
Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61
M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77
G. R. Yodgorov, F. Ismail, Z. I. Muminov, “A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space”, Sb. Math., 205:12 (2014), 1761–1774
Zahriddin Muminov, Fudziah Ismail, Jamshid Rasulov, “The Faddeev Equation and the Essential Spectrum of a Model Operator Associated with the Hamiltonian of a Nonconserved Number of Particles”, Advances in Mathematical Physics, 2014 (2014), 1
M. I. Muminov, U. R. Shodiev, “On the essential spectrum of a four-particle Schrödinger operator on a lattice”, Siberian Adv. Math., 21:4 (2011), 292–303
T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, Theoret. and Math. Phys., 164:1 (2010), 883–895
M. E. Muminov, U. R. Shodiev, “Spectral properties of a Hamiltonian of a four-particle system on a lattice”, Russian Math. (Iz. VUZ), 54:12 (2010), 27–37
Rasulov T.H., “Investigations of the essential spectrum of a Hamiltonian in Fock space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412
T. H. Rasulov, “Investigation of the spectrum of a model operator in a Fock space”, Theoret. and Math. Phys., 161:2 (2009), 1460–1470
T. H. Rasulov, “The Faddeev equation and the location of the essential spectrum of a model operator for several particles”, Russian Math. (Iz. VUZ), 52:12 (2008), 50–59