Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 2, Pages 224–228
DOI: https://doi.org/10.4213/tmf187
(Mi tmf187)
 

This article is cited in 6 scientific papers (total in 6 papers)

Dirichlet Series for Quasilinear Partial Differential Equations

A. Pickering

University of Salamanca
Full-text PDF (157 kB) Citations (6)
References:
Abstract: We consider the construction of Dirichlet series for quasilinear partial differential equations. We obtain a remarkable result that for the class of equations under study, the only equations that admit such a series solution are transformable back onto the only known integrable equation within the class.
Keywords: integrable systems, Dirichlet series.
Received: 18.03.2002
Revised: 03.05.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 2, Pages 638–641
DOI: https://doi.org/10.1023/A:1023614414403
Bibliographic databases:
Language: Russian
Citation: A. Pickering, “Dirichlet Series for Quasilinear Partial Differential Equations”, TMF, 135:2 (2003), 224–228; Theoret. and Math. Phys., 135:2 (2003), 638–641
Citation in format AMSBIB
\Bibitem{Pic03}
\by A.~Pickering
\paper Dirichlet Series for Quasilinear Partial Differential Equations
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 224--228
\mathnet{http://mi.mathnet.ru/tmf187}
\crossref{https://doi.org/10.4213/tmf187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008764}
\zmath{https://zbmath.org/?q=an:1178.35124}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 638--641
\crossref{https://doi.org/10.1023/A:1023614414403}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400003}
Linking options:
  • https://www.mathnet.ru/eng/tmf187
  • https://doi.org/10.4213/tmf187
  • https://www.mathnet.ru/eng/tmf/v135/i2/p224
  • This publication is cited in the following 6 articles:
    1. L E Barnes, A N W Hone, M Senthilvelan, S Stalin, “Similarity reductions of peakon equations: integrable cubic equations”, J. Phys. A: Math. Theor., 55:42 (2022), 424002  crossref
    2. Iyad SUWAN, “Multilevel Evaluation of the General Dirichlet Series”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 443  crossref
    3. Sowa A., “On an Eigenvalue Problem with a Reciprocal-Linear Term”, Waves Random Complex Media, 22:2 (2012), 186–206  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Gordoa, PR, “A note on the Painlevé analysis of a (2+1) dimensional Camassa-Holm equation”, Chaos Solitons & Fractals, 28:5 (2006), 1281  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Pickering A, Prada J, “Dirichlet series and the integrability of multilinear differential equations”, Journal of Mathematical Physics, 46:4 (2005), 043504  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Gordoa PR, Pickering A, Senthilvelan M, “Evidence for the nonintegrability of a water wave equation in 2+1 dimensions”, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 59:10 (2004), 640–644  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :209
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025