Abstract:
We investigate the rigged Hilbert space of free coherent states. We prove that this rigged Hilbert space is isomorphic to the space of generalized functions over a p-adic disk. We discuss the relation of the described isomorphism of rigged Hilbert spaces and noncommutative geometry and show that the considered example realizes the isomorphism between the noncommutative line and the p-adic disk.
Citation:
S. V. Kozyrev, “Rigged Hilbert Space of Free Coherent States and p-Adic Numbers”, TMF, 135:2 (2003), 229–239; Theoret. and Math. Phys., 135:2 (2003), 642–650
\Bibitem{Koz03}
\by S.~V.~Kozyrev
\paper Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 229--239
\mathnet{http://mi.mathnet.ru/tmf186}
\crossref{https://doi.org/10.4213/tmf186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008765}
\zmath{https://zbmath.org/?q=an:1178.81115}
\elib{https://elibrary.ru/item.asp?id=13438337}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 642--650
\crossref{https://doi.org/10.1023/A:1023666431242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400004}
Linking options:
https://www.mathnet.ru/eng/tmf186
https://doi.org/10.4213/tmf186
https://www.mathnet.ru/eng/tmf/v135/i2/p229
This publication is cited in the following 1 articles:
S. V. Kozyrev, “Methods and Applications of Ultrametric and $p$-Adic Analysis: From Wavelet Theory to Biophysics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S1–S84