Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 2, Pages 229–239
DOI: https://doi.org/10.4213/tmf186
(Mi tmf186)
 

This article is cited in 1 scientific paper (total in 1 paper)

Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers

S. V. Kozyrev

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
Full-text PDF (232 kB) Citations (1)
References:
Abstract: We investigate the rigged Hilbert space of free coherent states. We prove that this rigged Hilbert space is isomorphic to the space of generalized functions over a $p$-adic disk. We discuss the relation of the described isomorphism of rigged Hilbert spaces and noncommutative geometry and show that the considered example realizes the isomorphism between the noncommutative line and the $p$-adic disk.
Keywords: $p$-adic numbers, noncommutative geometry.
Received: 04.07.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 2, Pages 642–650
DOI: https://doi.org/10.1023/A:1023666431242
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Kozyrev, “Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers”, TMF, 135:2 (2003), 229–239; Theoret. and Math. Phys., 135:2 (2003), 642–650
Citation in format AMSBIB
\Bibitem{Koz03}
\by S.~V.~Kozyrev
\paper Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 229--239
\mathnet{http://mi.mathnet.ru/tmf186}
\crossref{https://doi.org/10.4213/tmf186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008765}
\zmath{https://zbmath.org/?q=an:1178.81115}
\elib{https://elibrary.ru/item.asp?id=13438337}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 642--650
\crossref{https://doi.org/10.1023/A:1023666431242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf186
  • https://doi.org/10.4213/tmf186
  • https://www.mathnet.ru/eng/tmf/v135/i2/p229
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:773
    Full-text PDF :285
    References:67
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024