Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 2, Pages 196–223
DOI: https://doi.org/10.4213/tmf182
(Mi tmf182)
 

This article is cited in 2 scientific papers (total in 2 papers)

Realization of the Universal sq(2)-Symmetric R-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter

D. R. Karakhanyan

Yerevan Physics Institute
Full-text PDF (323 kB) Citations (2)
References:
Abstract: Based on the realization of representations of the algebra sq(2) in the space of polynomials for general values of the deformation parameter q and on a finite tuple of theta functions, which are a natural generalization of polynomials, we construct the eigenstates and find the related eigenvalues of the universal R-operator for cyclic representations corresponding to qN=±1.
Keywords: exactly solvable models, universal R-matrix, cyclic representations, Nth root of unity, eigenvalues.
Received: 13.05.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 2, Pages 614–637
DOI: https://doi.org/10.1023/A:1023662330333
Bibliographic databases:
Language: Russian
Citation: D. R. Karakhanyan, “Realization of the Universal sq(2)-Symmetric R-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter”, TMF, 135:2 (2003), 196–223; Theoret. and Math. Phys., 135:2 (2003), 614–637
Citation in format AMSBIB
\Bibitem{Kar03}
\by D.~R.~Karakhanyan
\paper Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 196--223
\mathnet{http://mi.mathnet.ru/tmf182}
\crossref{https://doi.org/10.4213/tmf182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008763}
\zmath{https://zbmath.org/?q=an:1178.81127}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 614--637
\crossref{https://doi.org/10.1023/A:1023662330333}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400002}
Linking options:
  • https://www.mathnet.ru/eng/tmf182
  • https://doi.org/10.4213/tmf182
  • https://www.mathnet.ru/eng/tmf/v135/i2/p196
  • This publication is cited in the following 2 articles:
    1. Karakhanyan, D, “Fusion rules of the lowest weight representations of osp(q)(1 vertical bar 2) at roots of unity: polynomial realization”, Journal of Physics A-Mathematical and Theoretical, 42:37 (2009), 375205  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Karakhanyan D, Khachatryan S, “Polynomial realization of sl(q)(2) and fusion rules at exceptional values of q”, Letters in Mathematical Physics, 72:2 (2005), 83–97  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :174
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025