|
This article is cited in 2 scientific papers (total in 2 papers)
Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
D. R. Karakhanyan Yerevan Physics Institute
Abstract:
Based on the realization of representations of the algebra $s\ell_q(2)$ in the space of polynomials for general values of the deformation parameter $q$ and on a finite tuple of theta functions, which are a natural generalization of polynomials, we construct the eigenstates and find the related eigenvalues of the universal $R$-operator for cyclic representations corresponding to $q^N=\pm1$.
Keywords:
exactly solvable models, universal $R$-matrix, cyclic representations, $N$th root of unity, eigenvalues.
Received: 13.05.2002
Citation:
D. R. Karakhanyan, “Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter”, TMF, 135:2 (2003), 196–223; Theoret. and Math. Phys., 135:2 (2003), 614–637
Linking options:
https://www.mathnet.ru/eng/tmf182https://doi.org/10.4213/tmf182 https://www.mathnet.ru/eng/tmf/v135/i2/p196
|
Statistics & downloads: |
Abstract page: | 347 | Full-text PDF : | 165 | References: | 38 | First page: | 1 |
|