Abstract:
Based on the realization of representations of the algebra sℓq(2) in the space of polynomials for general values of the deformation parameter q and on a finite tuple of theta functions, which are a natural generalization of polynomials, we construct the eigenstates and find the related eigenvalues of the universal R-operator for cyclic representations corresponding to qN=±1.
Citation:
D. R. Karakhanyan, “Realization of the Universal sℓq(2)-Symmetric R-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter”, TMF, 135:2 (2003), 196–223; Theoret. and Math. Phys., 135:2 (2003), 614–637
\Bibitem{Kar03}
\by D.~R.~Karakhanyan
\paper Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 196--223
\mathnet{http://mi.mathnet.ru/tmf182}
\crossref{https://doi.org/10.4213/tmf182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008763}
\zmath{https://zbmath.org/?q=an:1178.81127}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 614--637
\crossref{https://doi.org/10.1023/A:1023662330333}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400002}
Linking options:
https://www.mathnet.ru/eng/tmf182
https://doi.org/10.4213/tmf182
https://www.mathnet.ru/eng/tmf/v135/i2/p196
This publication is cited in the following 2 articles:
Karakhanyan, D, “Fusion rules of the lowest weight representations of osp(q)(1 vertical bar 2) at roots of unity: polynomial realization”, Journal of Physics A-Mathematical and Theoretical, 42:37 (2009), 375205
Karakhanyan D, Khachatryan S, “Polynomial realization of sl(q)(2) and fusion rules at exceptional values of q”, Letters in Mathematical Physics, 72:2 (2005), 83–97