Abstract:
The two-band Hubbard model is considered within the framework of a diagram technique designed to take strong electronic correlations into account.
Citation:
S. P. Cojocaru, V. A. Moskalenko, “A diagram method for the two-band Hubbard model”, TMF, 97:2 (1993), 270–282; Theoret. and Math. Phys., 97:2 (1993), 1290–1298
\Bibitem{CojMos93}
\by S.~P.~Cojocaru, V.~A.~Moskalenko
\paper A diagram method for the two-band Hubbard model
\jour TMF
\yr 1993
\vol 97
\issue 2
\pages 270--282
\mathnet{http://mi.mathnet.ru/tmf1739}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 2
\pages 1290--1298
\crossref{https://doi.org/10.1007/BF01016875}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NK68000009}
Linking options:
https://www.mathnet.ru/eng/tmf1739
https://www.mathnet.ru/eng/tmf/v97/i2/p270
This publication is cited in the following 4 articles:
Moskalenko V.A., Entel P., Marinaro M., Perkins N.B., Holtfort C., “Hopping perturbation treatment of the periodic Anderson model around the atomic limit”, Physical Review B, 63:24 (2001), 245119
Andrij M. Shvaika, “Strong-coupling approach for strongly correlated electron systems”, Phys. Rev. B, 62:4 (2000), 2358
V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, Theoret. and Math. Phys., 121:3 (1999), 1654–1665
V. A. Moskalenko, “Perturbation theory for the periodic Anderson model: II. Superconducting state”, Theoret. and Math. Phys., 116:3 (1998), 1094–1107