Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 97, Number 2, Pages 250–269 (Mi tmf1738)  

This article is cited in 13 scientific papers (total in 13 papers)

Complete separation of variables in the free Hamilton–Jacobi equation

V. G. Bagrov, V. V. Obukhov

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The theory of Stäckel spaces is generalized to the case when the coordinate system in which there is complete separation of variables in the free Hamilton–Jacobi equation contains complex variables. Theorems which establish necessary and sufficient criteria of such spaces are proved.
Received: 01.10.1991
Revised: 21.10.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 97, Issue 2, Pages 1275–1289
DOI: https://doi.org/10.1007/BF01016874
Bibliographic databases:
Language: Russian
Citation: V. G. Bagrov, V. V. Obukhov, “Complete separation of variables in the free Hamilton–Jacobi equation”, TMF, 97:2 (1993), 250–269; Theoret. and Math. Phys., 97:2 (1993), 1275–1289
Citation in format AMSBIB
\Bibitem{BagObu93}
\by V.~G.~Bagrov, V.~V.~Obukhov
\paper Complete separation of variables in the free Hamilton--Jacobi equation
\jour TMF
\yr 1993
\vol 97
\issue 2
\pages 250--269
\mathnet{http://mi.mathnet.ru/tmf1738}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257871}
\zmath{https://zbmath.org/?q=an:0798.53069}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 2
\pages 1275--1289
\crossref{https://doi.org/10.1007/BF01016874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NK68000008}
Linking options:
  • https://www.mathnet.ru/eng/tmf1738
  • https://www.mathnet.ru/eng/tmf/v97/i2/p250
  • This publication is cited in the following 13 articles:
    1. M. O. Katanaev, “Separation of variables in the Hamilton–Jacobi equation for geodesics in two and three dimensions”, Theoret. and Math. Phys., 218:2 (2024), 264–275  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. M. D. de Oliveira, Alexandre G. M. Schmidt, “Exact solution of the Klein–Gordon oscillator in wormhole spacetime with Heun polynomial”, Int. J. Mod. Phys. D, 2024  crossref
    3. Obukhov V.V., “Algebras of Integrals of Motion For the Hamilton-Jacobi and Klein-Gordon-Fock Equations in Spacetime With Four-Parameter Groups of Motions in the Presence of An External Electromagnetic Field”, J. Math. Phys., 63:2 (2022), 023505  crossref  isi
    4. Obukhov V.V., “<P>Algebra of the Symmetry Operators of the Klein-Gordon-Fock Equation For the Case When Groups of Motions G(3) Act Transitively on Null Subsurfaces of Spacetime</P>”, Symmetry-Basel, 14:2 (2022), 346  crossref  isi
    5. Obukhov V.V., Myrzakulov K.R., Guselnikova U.A., Zhadyranova A., “Algebras of Symmetry Operators of the Klein-Gordon-Fock Equation For Groups Acting Transitively on Two-Dimensional Subspaces of a Space-Time Manifold”, Russ. Phys. J., 64:7 (2021), 1320–1327  crossref  isi
    6. Magazev A.A., “Constructing a Complete Integral of the Hamilton-Jacobi Equation on Pseudo-Riemannian Spaces With Simply Transitive Groups of Motions”, Math. Phys. Anal. Geom., 24:2 (2021), 11  crossref  isi
    7. Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036  crossref  isi
    8. Obukhov V.V., “Algebra of Symmetry Operators For Klein-Gordon-Fock Equation”, Symmetry-Basel, 13:4 (2021), 727  crossref  isi
    9. V. V. Obukhov, “Solutions of Maxwell's Equations in Vacuum for Stäckel Spaces of Type (1.1)”, Russ Phys J, 64:4 (2021), 695  crossref
    10. Obukhov V., “Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Space of Type (2.0)”, Symmetry-Basel, 12:8 (2020), 1289  crossref  isi
    11. Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186  crossref  isi
    12. S. V. Chervon, V. M. Zhuravlev, “Exact solutions in cosmological inflationary models”, Russ Phys J, 39:8 (1996), 776  crossref
    13. V. G. Bagrov, A. D. Istomin, V. V. Obukhov, K. E. Osetrin, “Classification of conformal steckel spaces in the vaidia problem”, Russ Phys J, 39:8 (1996), 744  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :217
    References:102
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025