Abstract:
The theory of Stäckel spaces is generalized to the case when the coordinate system in which there is complete separation of variables in the free Hamilton–Jacobi equation contains complex variables. Theorems which establish necessary and sufficient criteria of such spaces are proved.
Citation:
V. G. Bagrov, V. V. Obukhov, “Complete separation of variables in the free Hamilton–Jacobi equation”, TMF, 97:2 (1993), 250–269; Theoret. and Math. Phys., 97:2 (1993), 1275–1289
This publication is cited in the following 13 articles:
M. O. Katanaev, “Separation of variables in the Hamilton–Jacobi equation for geodesics in two and three dimensions”, Theoret. and Math. Phys., 218:2 (2024), 264–275
M. D. de Oliveira, Alexandre G. M. Schmidt, “Exact solution of the Klein–Gordon oscillator in wormhole spacetime with Heun polynomial”, Int. J. Mod. Phys. D, 2024
Obukhov V.V., “Algebras of Integrals of Motion For the Hamilton-Jacobi and Klein-Gordon-Fock Equations in Spacetime With Four-Parameter Groups of Motions in the Presence of An External Electromagnetic Field”, J. Math. Phys., 63:2 (2022), 023505
Obukhov V.V., “<P>Algebra of the Symmetry Operators of the Klein-Gordon-Fock Equation For the Case When Groups of Motions G(3) Act Transitively on Null Subsurfaces of Spacetime</P>”, Symmetry-Basel, 14:2 (2022), 346
Obukhov V.V., Myrzakulov K.R., Guselnikova U.A., Zhadyranova A., “Algebras of Symmetry Operators of the Klein-Gordon-Fock Equation For Groups Acting Transitively on Two-Dimensional Subspaces of a Space-Time Manifold”, Russ. Phys. J., 64:7 (2021), 1320–1327
Magazev A.A., “Constructing a Complete Integral of the Hamilton-Jacobi Equation on Pseudo-Riemannian Spaces With Simply Transitive Groups of Motions”, Math. Phys. Anal. Geom., 24:2 (2021), 11
Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036
Obukhov V.V., “Algebra of Symmetry Operators For Klein-Gordon-Fock Equation”, Symmetry-Basel, 13:4 (2021), 727
V. V. Obukhov, “Solutions of Maxwell's Equations in Vacuum for Stäckel Spaces of Type (1.1)”, Russ Phys J, 64:4 (2021), 695
Obukhov V., “Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Space of Type (2.0)”, Symmetry-Basel, 12:8 (2020), 1289
Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186
S. V. Chervon, V. M. Zhuravlev, “Exact solutions in cosmological inflationary models”, Russ Phys J, 39:8 (1996), 776
V. G. Bagrov, A. D. Istomin, V. V. Obukhov, K. E. Osetrin, “Classification of conformal steckel spaces in the vaidia problem”, Russ Phys J, 39:8 (1996), 744