Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 97, Number 2, Pages 283–303 (Mi tmf1740)  

This article is cited in 6 scientific papers (total in 6 papers)

Analytical solution of the vector model kinetic equations with constant kernel and their applications

A. V. Latyshev

Moscow Pedagogical University, Moscow, Russian Federation
References:
Abstract: Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
$$\begin {gathered} \mu \frac {\partial }{\partial x}\Psi (x,\mu )+\Sigma \Psi (x,\mu )=C\int _{-\infty }^{\infty }\exp \left (-{\mu '}^2\right )\Psi (x,\mu ')\,d\mu ',\\ \lim _{x\to 0+}\Psi (x,\mu )=\Psi _0(\mu ),\qquad \mu >0,\\ \lim _{x\to +\infty }\Psi (x,\mu )=A,\qquad \mu <0, \end {gathered} $$
is obtained. Here $x>0$, $\mu \in (-\infty ,0)\cup (0,+\infty )$, $\Sigma =\operatorname {diag}\{\sigma _1,\sigma _2\}$, $C=\left [c_{ij}\right ]$$2\times 2$-matrix, $\Psi (x,\mu )$ is vector-column with elements $\psi _1$ and $\psi _2$. As an application, an exact solution is obtained for the first time to the problem of the diffusion slip of a binary gas for a model Boltzmann equation with collision operator in the form proposed by MacCormack.
Received: 03.11.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 97, Issue 2, Pages 1299–1311
DOI: https://doi.org/10.1007/BF01016876
Bibliographic databases:
Language: Russian
Citation: A. V. Latyshev, “Analytical solution of the vector model kinetic equations with constant kernel and their applications”, TMF, 97:2 (1993), 283–303; Theoret. and Math. Phys., 97:2 (1993), 1299–1311
Citation in format AMSBIB
\Bibitem{Lat93}
\by A.~V.~Latyshev
\paper Analytical solution of the vector model kinetic equations with constant kernel and their applications
\jour TMF
\yr 1993
\vol 97
\issue 2
\pages 283--303
\mathnet{http://mi.mathnet.ru/tmf1740}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257872}
\zmath{https://zbmath.org/?q=an:0802.45007}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 2
\pages 1299--1311
\crossref{https://doi.org/10.1007/BF01016876}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NK68000010}
Linking options:
  • https://www.mathnet.ru/eng/tmf1740
  • https://www.mathnet.ru/eng/tmf/v97/i2/p283
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024