Abstract:
We use the isomonodromy properties of theta-functional solutions of the Ernst equation and an asymptotic expansion in the spectral parameter to establish algebraic relations, enforced by the underlying Riemann surface, between the metric functions and their derivatives. These relations determine which classes of boundary value problems can be solved on a given surface. The situation on lower-genus Riemann surfaces is studied in detail.
Keywords:
general relativity theory, exact solutions, isomonodromy deformations.
Citation:
C. Klein, “Isomonodromy Approach to Boundary Value Problems for the Ernst Equation”, TMF, 134:1 (2003), 85–100; Theoret. and Math. Phys., 134:1 (2003), 72–85
\Bibitem{Kle03}
\by C.~Klein
\paper Isomonodromy Approach to Boundary Value Problems for the Ernst Equation
\jour TMF
\yr 2003
\vol 134
\issue 1
\pages 85--100
\mathnet{http://mi.mathnet.ru/tmf142}
\crossref{https://doi.org/10.4213/tmf142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021732}
\zmath{https://zbmath.org/?q=an:1066.83512}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 1
\pages 72--85
\crossref{https://doi.org/10.1023/A:1021819707013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181042100007}
Linking options:
https://www.mathnet.ru/eng/tmf142
https://doi.org/10.4213/tmf142
https://www.mathnet.ru/eng/tmf/v134/i1/p85
This publication is cited in the following 3 articles:
Christian Klein, Lecture Notes in Physics, 685, Ernst Equation and Riemann Surfaces, 2005, 237
Klein, C, “On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks”, Annalen der Physik, 12:10 (2003), 599
C. Klein, “On explicit solutions to the stationary axisymmetric Einstein‐Maxwell equations describing dust disks”, Annalen der Physik, 515:10 (2003), 599