|
This article is cited in 4 scientific papers (total in 4 papers)
Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
R. K. Bullougha, N. M. Bogolyubovb, V. S. Kapitonovc, K. L. Malyshevb, I. Timonend, A. V. Rybind, G. G. Varzugine, M. Lindbergf a University of Manchester, Department of Mathematics
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c State Technological Institute of St. Petersburg
d University of Jyväskylä
e V. A. Fock Institute of Physics, Saint-Petersburg State University
f Åbo Akademi University
Abstract:
We evaluate finite-temperature equilibrium correlators корреляторы $\langle T_\tau \hat{\psi}({\bold r}_1) \hat{\psi}^\dagger({\bold r}_2)\rangle$ for thermal time $\tau$ ordered Bose fields полей $\hat{\psi}$, $\hat{\psi}^\dagger$ to good approximations by new methods of functional integration in $d=1,2,3$ dimensions and with the trap potentials $V({\bold r})\not\equiv0$. As in the translationally invariant cases, asymptotic behaviors fall as $R^{-1}\equiv|{\bold r}_1-{\bold r}_2|^{-1}$ to longer-range condensate values for and only for $d=3$ in agreement with experimental observations; but there are generally significant corrections also depending on ${\bold S}\equiv({\bold r}_1+{\bold r}_2)/2$ due to the presence of the traps. For $d=1$, we regain the exact translationally invariant results as the trap frequencies $\Omega\rightarrow0$. In analyzing the attractive cases, we investigate the time-dependent $c$-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity $-2c\psi|\psi|^{2n}$ and $c<0$. For $n=1$, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for $c<0$ and $nd\geq2$ and a functional $E_{\textup{NLS}}[\psi]\leq0$ even when $V({\bold r})\not\equiv0$. The singularities typically arise as $\delta$-functions centered on the trap origin ${\bold r}={\bold 0}$.
Keywords:
Bose–Einstein condensation, functional integral method, quantum model of nonlinear Schrödinger equation, finite-temperature theory, magnetic traps, two-point correlations, coherence functions.
Citation:
R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, TMF, 134:1 (2003), 55–73; Theoret. and Math. Phys., 134:1 (2003), 47–61
Linking options:
https://www.mathnet.ru/eng/tmf140https://doi.org/10.4213/tmf140 https://www.mathnet.ru/eng/tmf/v134/i1/p55
|
Statistics & downloads: |
Abstract page: | 654 | Full-text PDF : | 275 | References: | 89 | First page: | 1 |
|