Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 134, Number 1, Pages 55–73
DOI: https://doi.org/10.4213/tmf140
(Mi tmf140)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$

R. K. Bullougha, N. M. Bogolyubovb, V. S. Kapitonovc, K. L. Malyshevb, I. Timonend, A. V. Rybind, G. G. Varzugine, M. Lindbergf

a University of Manchester, Department of Mathematics
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c State Technological Institute of St. Petersburg
d University of Jyväskylä
e V. A. Fock Institute of Physics, Saint-Petersburg State University
f Åbo Akademi University
Full-text PDF (336 kB) Citations (4)
References:
Abstract: We evaluate finite-temperature equilibrium correlators корреляторы $\langle T_\tau \hat{\psi}({\bold r}_1) \hat{\psi}^\dagger({\bold r}_2)\rangle$ for thermal time $\tau$ ordered Bose fields полей $\hat{\psi}$, $\hat{\psi}^\dagger$ to good approximations by new methods of functional integration in $d=1,2,3$ dimensions and with the trap potentials $V({\bold r})\not\equiv0$. As in the translationally invariant cases, asymptotic behaviors fall as $R^{-1}\equiv|{\bold r}_1-{\bold r}_2|^{-1}$ to longer-range condensate values for and only for $d=3$ in agreement with experimental observations; but there are generally significant corrections also depending on ${\bold S}\equiv({\bold r}_1+{\bold r}_2)/2$ due to the presence of the traps. For $d=1$, we regain the exact translationally invariant results as the trap frequencies $\Omega\rightarrow0$. In analyzing the attractive cases, we investigate the time-dependent $c$-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity $-2c\psi|\psi|^{2n}$ and $c<0$. For $n=1$, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for $c<0$ and $nd\geq2$ and a functional $E_{\textup{NLS}}[\psi]\leq0$ even when $V({\bold r})\not\equiv0$. The singularities typically arise as $\delta$-functions centered on the trap origin ${\bold r}={\bold 0}$.
Keywords: Bose–Einstein condensation, functional integral method, quantum model of nonlinear Schrödinger equation, finite-temperature theory, magnetic traps, two-point correlations, coherence functions.
English version:
Theoretical and Mathematical Physics, 2003, Volume 134, Issue 1, Pages 47–61
DOI: https://doi.org/10.1023/A:1021815606105
Bibliographic databases:
Language: Russian
Citation: R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, TMF, 134:1 (2003), 55–73; Theoret. and Math. Phys., 134:1 (2003), 47–61
Citation in format AMSBIB
\Bibitem{BulBogKap03}
\by R.~K.~Bullough, N.~M.~Bogolyubov, V.~S.~Kapitonov, K.~L.~Malyshev, I.~Timonen, A.~V.~Rybin, G.~G.~Varzugin, M.~Lindberg
\paper Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
\jour TMF
\yr 2003
\vol 134
\issue 1
\pages 55--73
\mathnet{http://mi.mathnet.ru/tmf140}
\crossref{https://doi.org/10.4213/tmf140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021730}
\zmath{https://zbmath.org/?q=an:1078.81534}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 1
\pages 47--61
\crossref{https://doi.org/10.1023/A:1021815606105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181042100005}
Linking options:
  • https://www.mathnet.ru/eng/tmf140
  • https://doi.org/10.4213/tmf140
  • https://www.mathnet.ru/eng/tmf/v134/i1/p55
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :275
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025