Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 1, Pages 35–40
DOI: https://doi.org/10.4213/tmf14
(Mi tmf14)
 

Evolution Operator for a Quantum Pendulum

S. M. Sergeevab

a Max Planck Institute for Mathematics
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: We conjecture one remarkable relation for infinite series in the simple Weyl algebra. This relation expresses an evolution operator for a quantum pendulum via its Hamiltonian.
Keywords: simple Weyl algebra, compact quantum dilogarithm.
Received: 18.12.2002
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 1, Pages 28–32
DOI: https://doi.org/10.1023/B:TAMP.0000010630.06178.ef
Bibliographic databases:
Language: Russian
Citation: S. M. Sergeev, “Evolution Operator for a Quantum Pendulum”, TMF, 138:1 (2004), 35–40; Theoret. and Math. Phys., 138:1 (2004), 28–32
Citation in format AMSBIB
\Bibitem{Ser04}
\by S.~M.~Sergeev
\paper Evolution Operator for a~Quantum Pendulum
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 35--40
\mathnet{http://mi.mathnet.ru/tmf14}
\crossref{https://doi.org/10.4213/tmf14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061090}
\zmath{https://zbmath.org/?q=an:1178.81064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...28S}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 28--32
\crossref{https://doi.org/10.1023/B:TAMP.0000010630.06178.ef}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100003}
Linking options:
  • https://www.mathnet.ru/eng/tmf14
  • https://doi.org/10.4213/tmf14
  • https://www.mathnet.ru/eng/tmf/v138/i1/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :196
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024