Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 1, Pages 41–54
DOI: https://doi.org/10.4213/tmf7
(Mi tmf7)
 

This article is cited in 14 scientific papers (total in 14 papers)

Local Perturbations of the Schrödinger Operator on the Plane

R. R. Gadyl'shin

Bashkir State Pedagogical University
References:
Abstract: We obtain necessary and sufficient conditions for the appearance of a small eigenvalue of the Schrödinger operator on the plane under local operatorial excitations. In the case where the small eigenvalue exists, we construct its asymptotic behavior. We present examples.
Keywords: Schrödinger operator, perturbation, small parameter, eigenvalue, asymptotic behavior.
Received: 31.07.2002
Revised: 19.03.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 1, Pages 33–44
DOI: https://doi.org/10.1023/B:TAMP.0000010631.40891.f0
Bibliographic databases:
Language: Russian
Citation: R. R. Gadyl'shin, “Local Perturbations of the Schrödinger Operator on the Plane”, TMF, 138:1 (2004), 41–54; Theoret. and Math. Phys., 138:1 (2004), 33–44
Citation in format AMSBIB
\Bibitem{Gad04}
\by R.~R.~Gadyl'shin
\paper Local Perturbations of the Schr\"odinger Operator on the Plane
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 41--54
\mathnet{http://mi.mathnet.ru/tmf7}
\crossref{https://doi.org/10.4213/tmf7}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061091}
\zmath{https://zbmath.org/?q=an:1178.35146}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...33G}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 33--44
\crossref{https://doi.org/10.1023/B:TAMP.0000010631.40891.f0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100004}
Linking options:
  • https://www.mathnet.ru/eng/tmf7
  • https://doi.org/10.4213/tmf7
  • https://www.mathnet.ru/eng/tmf/v138/i1/p41
  • This publication is cited in the following 14 articles:
    1. Borisov I D., Zezyulin D.A., Znojil M., “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators Under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880  crossref  mathscinet  isi
    2. Golovaty Yu., “Eigenvalues of Schrodinger Operators Near Thresholds: Two Term Approximation”, Methods Funct. Anal. Topol., 26:1 (2020), 76–87  crossref  mathscinet  isi  scopus
    3. Golovaty Yu.D., “On Coupling Constant Thresholds in One Dimension”, Carpathian Math. Publ., 13:1 (2020), 22–38  crossref  mathscinet  isi  scopus
    4. M. S. Smetanina, “Asimptotika urovnei operatora Shrëdingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 462–473  mathnet  crossref  elib
    5. D. I. Borisov, “Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf”, J. Math. Sci. (N. Y.), 252:2 (2021), 135–146  mathnet  crossref  mathscinet
    6. D. I. Borisov, M. Znojil, “On eigenvalues of a PT-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. D.I. Borisov, “Estimates of initial scales for layers with small random negative-definite perturbations”, J. Math. Sci. (N. Y.), 241:5 (2019), 518–548  mathnet  mathnet  crossref
    8. D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. I. Kh. Khusnullin, “A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval”, Comput. Math. Math. Phys., 50:4 (2010), 646–664  mathnet  crossref  mathscinet  adsnasa  isi
    10. Borisov, D, “The spectrum of two quantum layers coupled by a window”, Journal of Physics A-Mathematical and Theoretical, 40:19 (2007), 5045  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    11. A. R. Bikmetov, R. R. Gadyl'shin, “On the spectrum of the Schrödinger operator with large potential concentrated on a small set”, Math. Notes, 79:5 (2006), 729–733  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. A. R. Bikmetov, D. I. Borisov, “Discrete Spectrum of the Schrodinger Operator Perturbed by a Narrowly Supported Potential”, Theoret. and Math. Phys., 145:3 (2005), 1691–1702  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. Borisov D, Exner P, “Exponential splitting of bound states in a waveguide with a pair of distant windows”, Journal of Physics A-Mathematical and General, 37:10 (2004), 3411–3428  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :235
    References:90
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025