Abstract:
We obtain necessary and sufficient conditions for the appearance of a small eigenvalue of the Schrödinger operator on the plane under local operatorial excitations. In the case where the small eigenvalue exists, we construct its asymptotic behavior. We present examples.
Keywords:
Schrödinger operator, perturbation, small parameter, eigenvalue, asymptotic behavior.
Citation:
R. R. Gadyl'shin, “Local Perturbations of the Schrödinger Operator on the Plane”, TMF, 138:1 (2004), 41–54; Theoret. and Math. Phys., 138:1 (2004), 33–44
\Bibitem{Gad04}
\by R.~R.~Gadyl'shin
\paper Local Perturbations of the Schr\"odinger Operator on the Plane
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 41--54
\mathnet{http://mi.mathnet.ru/tmf7}
\crossref{https://doi.org/10.4213/tmf7}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061091}
\zmath{https://zbmath.org/?q=an:1178.35146}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...33G}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 33--44
\crossref{https://doi.org/10.1023/B:TAMP.0000010631.40891.f0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100004}
Linking options:
https://www.mathnet.ru/eng/tmf7
https://doi.org/10.4213/tmf7
https://www.mathnet.ru/eng/tmf/v138/i1/p41
This publication is cited in the following 14 articles:
Borisov I D., Zezyulin D.A., Znojil M., “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators Under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880
Golovaty Yu., “Eigenvalues of Schrodinger Operators Near Thresholds: Two Term Approximation”, Methods Funct. Anal. Topol., 26:1 (2020), 76–87
Golovaty Yu.D., “On Coupling Constant Thresholds in One Dimension”, Carpathian Math. Publ., 13:1 (2020), 22–38
M. S. Smetanina, “Asimptotika urovnei operatora Shrëdingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 462–473
D. I. Borisov, “Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf”, J. Math. Sci. (N. Y.), 252:2 (2021), 135–146
D. I. Borisov, M. Znojil, “On eigenvalues of a PT-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199
D.I. Borisov, “Estimates of initial scales for layers with small random negative-definite perturbations”, J. Math. Sci. (N. Y.), 241:5 (2019), 518–548
D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505
I. Kh. Khusnullin, “A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval”, Comput. Math. Math. Phys., 50:4 (2010), 646–664
Borisov, D, “The spectrum of two quantum layers coupled by a window”, Journal of Physics A-Mathematical and Theoretical, 40:19 (2007), 5045
A. R. Bikmetov, R. R. Gadyl'shin, “On the spectrum of the Schrödinger operator with large potential concentrated on a small set”, Math. Notes, 79:5 (2006), 729–733
D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504
A. R. Bikmetov, D. I. Borisov, “Discrete Spectrum of the Schrodinger Operator Perturbed by a Narrowly Supported Potential”, Theoret. and Math. Phys., 145:3 (2005), 1691–1702
Borisov D, Exner P, “Exponential splitting of bound states in a waveguide with a pair of distant windows”, Journal of Physics A-Mathematical and General, 37:10 (2004), 3411–3428