Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 1, Pages 23–34
DOI: https://doi.org/10.4213/tmf11
(Mi tmf11)
 

This article is cited in 6 scientific papers (total in 6 papers)

SL(2)SL(2)-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds

I. G. Korepanov

South Ural State University
Full-text PDF (226 kB) Citations (6)
References:
Abstract: We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group SL(2)SL(2). If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Keywords: pentagon equation, Pachner moves, acyclic complexes, torsion, invariants of manifolds.
Received: 23.12.2002
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 1, Pages 18–27
DOI: https://doi.org/10.1023/B:TAMP.0000010629.96356.52
Bibliographic databases:
Language: Russian
Citation: I. G. Korepanov, “SL(2)SL(2)-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds”, TMF, 138:1 (2004), 23–34; Theoret. and Math. Phys., 138:1 (2004), 18–27
Citation in format AMSBIB
\Bibitem{Kor04}
\by I.~G.~Korepanov
\paper $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 23--34
\mathnet{http://mi.mathnet.ru/tmf11}
\crossref{https://doi.org/10.4213/tmf11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061089}
\zmath{https://zbmath.org/?q=an:1178.57011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...18K}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 18--27
\crossref{https://doi.org/10.1023/B:TAMP.0000010629.96356.52}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100002}
Linking options:
  • https://www.mathnet.ru/eng/tmf11
  • https://doi.org/10.4213/tmf11
  • https://www.mathnet.ru/eng/tmf/v138/i1/p23
  • This publication is cited in the following 6 articles:
    1. V. O. Manturov, I. M. Nikonov, “On an Invariant of Pure Braids”, Dokl. Math., 109:2 (2024), 164  crossref
    2. V. O. Manturov, I. M. Nikonov, “On an invariant of pure braids”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 79  crossref
    3. Vassily Olegovich Manturov, Zheyan Wan, “The photography method: Solving pentagon equation”, J. Knot Theory Ramifications, 32:11 (2023)  crossref
    4. Aristophanes Dimakis, Folkert Müller-Hoissen, “Simplex and Polygon Equations”, SIGMA, 11 (2015), 042, 49 pp.  mathnet  crossref  mathscinet
    5. I. G. Korepanov, “Geometric torsions and an Atiyah-style topological field theory”, Theoret. and Math. Phys., 158:3 (2009), 344–354  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. Igor G. Korepanov, “Pachner Move 3333 and Affine Volume-Preserving Geometry in R3”, SIGMA, 1 (2005), 021, 7 pp.  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :203
    References:51
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025