Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 1, Pages 23–34
DOI: https://doi.org/10.4213/tmf11
(Mi tmf11)
 

This article is cited in 6 scientific papers (total in 6 papers)

$SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds

I. G. Korepanov

South Ural State University
Full-text PDF (226 kB) Citations (6)
References:
Abstract: We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group $SL(2)$. If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Keywords: pentagon equation, Pachner moves, acyclic complexes, torsion, invariants of manifolds.
Received: 23.12.2002
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 1, Pages 18–27
DOI: https://doi.org/10.1023/B:TAMP.0000010629.96356.52
Bibliographic databases:
Language: Russian
Citation: I. G. Korepanov, “$SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds”, TMF, 138:1 (2004), 23–34; Theoret. and Math. Phys., 138:1 (2004), 18–27
Citation in format AMSBIB
\Bibitem{Kor04}
\by I.~G.~Korepanov
\paper $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 23--34
\mathnet{http://mi.mathnet.ru/tmf11}
\crossref{https://doi.org/10.4213/tmf11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061089}
\zmath{https://zbmath.org/?q=an:1178.57011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...18K}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 18--27
\crossref{https://doi.org/10.1023/B:TAMP.0000010629.96356.52}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100002}
Linking options:
  • https://www.mathnet.ru/eng/tmf11
  • https://doi.org/10.4213/tmf11
  • https://www.mathnet.ru/eng/tmf/v138/i1/p23
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :190
    References:43
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024