Abstract:
We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group SL(2)SL(2). If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Citation:
I. G. Korepanov, “SL(2)SL(2)-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds”, TMF, 138:1 (2004), 23–34; Theoret. and Math. Phys., 138:1 (2004), 18–27
\Bibitem{Kor04}
\by I.~G.~Korepanov
\paper $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
\jour TMF
\yr 2004
\vol 138
\issue 1
\pages 23--34
\mathnet{http://mi.mathnet.ru/tmf11}
\crossref{https://doi.org/10.4213/tmf11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061089}
\zmath{https://zbmath.org/?q=an:1178.57011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138...18K}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 1
\pages 18--27
\crossref{https://doi.org/10.1023/B:TAMP.0000010629.96356.52}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188977100002}
Linking options:
https://www.mathnet.ru/eng/tmf11
https://doi.org/10.4213/tmf11
https://www.mathnet.ru/eng/tmf/v138/i1/p23
This publication is cited in the following 6 articles:
V. O. Manturov, I. M. Nikonov, “On an Invariant of Pure Braids”, Dokl. Math., 109:2 (2024), 164
V. O. Manturov, I. M. Nikonov, “On an invariant of pure braids”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 79
Vassily Olegovich Manturov, Zheyan Wan, “The photography method: Solving pentagon equation”, J. Knot Theory Ramifications, 32:11 (2023)
Aristophanes Dimakis, Folkert Müller-Hoissen, “Simplex and Polygon Equations”, SIGMA, 11 (2015), 042, 49 pp.
I. G. Korepanov, “Geometric torsions and an Atiyah-style topological field theory”, Theoret. and Math. Phys., 158:3 (2009), 344–354
Igor G. Korepanov, “Pachner Move 3→33→3 and Affine Volume-Preserving Geometry in R3”, SIGMA, 1 (2005), 021, 7 pp.