Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 33–39
DOI: https://doi.org/10.4213/tmf10212
(Mi tmf10212)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quasidifferential operator and quantum argument shift method

Y. Ikeda

Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (352 kB) Citations (6)
References:
Abstract: We describe an explicit formula for the first-order quasiderivation of an arbitrary central element of the universal enveloping algebra of a general linear Lie algebra. We apply it to show that derivations of any two central elements of the universal enveloping algebra commute. This contributes to the Vinberg problem of finding commutative subalgebras in universal enveloping algebras with the underlying Poisson algebras determined by the argument shift method.
Keywords: universal enveloping algebra, Lie algebra, quantum argument shift method, deformation quantization.
Received: 25.11.2021
Revised: 13.01.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 918–924
DOI: https://doi.org/10.1134/S0040577922070030
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Y. Ikeda, “Quasidifferential operator and quantum argument shift method”, TMF, 212:1 (2022), 33–39; Theoret. and Math. Phys., 212:1 (2022), 918–924
Citation in format AMSBIB
\Bibitem{Ike22}
\by Y.~Ikeda
\paper Quasidifferential operator and quantum argument shift method
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 33--39
\mathnet{http://mi.mathnet.ru/tmf10212}
\crossref{https://doi.org/10.4213/tmf10212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461542}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..918I}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 918--924
\crossref{https://doi.org/10.1134/S0040577922070030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134953763}
Linking options:
  • https://www.mathnet.ru/eng/tmf10212
  • https://doi.org/10.4213/tmf10212
  • https://www.mathnet.ru/eng/tmf/v212/i1/p33
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :61
    References:41
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024