Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 62–82
DOI: https://doi.org/10.4213/tmf10217
(Mi tmf10217)
 

This article is cited in 2 scientific papers (total in 2 papers)

Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions

N. T. Levashova, B. V. Tischenko

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (510 kB) Citations (2)
References:
Abstract: Asymptotic analysis is used to study the existence, local uniqueness, and asymptotic stability in the sense of Lyapunov of a solution of a one-dimensional nonlinear system of reaction–diffusion equations with various types of quasimonotonicity of the functions describing reactions. A feature of the problem is the discontinuities (jumps) of these functions at a single point on the segment on which the problem is posed. The solution with a large gradient in the vicinity of the discontinuity point is studied. Sufficient conditions for the existence of a stable stationary solution of systems with various quasimonotonicity conditions are given. The asymptotic method of differential inequalities is used to prove the existence and stability theorems. The main distinctive features of this method for various types of quasimonotonicity are listed.
Keywords: system of nonlinear equations, small parameter, internal transition layers, upper and lower solutions, asymptotic approximation of a solution, Lyapunov asymptotic stability, quasimonotonicity condition.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This paper was supported by the Russian Science Foundation (project No. 18-11-00042).
Received: 01.12.2021
Revised: 08.02.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 944–961
DOI: https://doi.org/10.1134/S0040577922070054
Bibliographic databases:
Document Type: Article
PACS: 02.30.Hq
MSC: 34B16
Language: Russian
Citation: N. T. Levashova, B. V. Tischenko, “Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions”, TMF, 212:1 (2022), 62–82; Theoret. and Math. Phys., 212:1 (2022), 944–961
Citation in format AMSBIB
\Bibitem{LevTis22}
\by N.~T.~Levashova, B.~V.~Tischenko
\paper Existence and stability of a~stationary solution of the~system of diffusion equations in a~medium with discontinuous characteristics under various quasimonotonicity conditions
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 62--82
\mathnet{http://mi.mathnet.ru/tmf10217}
\crossref{https://doi.org/10.4213/tmf10217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461544}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..944L}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 944--961
\crossref{https://doi.org/10.1134/S0040577922070054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134804352}
Linking options:
  • https://www.mathnet.ru/eng/tmf10217
  • https://doi.org/10.4213/tmf10217
  • https://www.mathnet.ru/eng/tmf/v212/i1/p62
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :58
    References:44
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024