Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 260, Pages 227–247 (Mi tm597)  

This article is cited in 22 scientific papers (total in 22 papers)

On the Properties of Maps Connected with Inverse Sturm–Liouville Problems

A. M. Savchuk, A. A. Shkalikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $L_\mathrm D$ be the Sturm–Liouville operator generated by the differential expression $Ly=-y''+q(x)y$ on the finite interval $[0,\pi]$ and by the Dirichlet boundary conditions. We assume that the potential $q$ belongs to the Sobolev space $W^\theta_2[0,\pi]$ with some $\theta\geq-1$. It is well known that one can uniquely recover the potential $q$ from the spectrum and the norming constants of the operator $L_\mathrm D$. In this paper, we construct special spaces of sequences $\widehat l_2^{\,\theta}$ in which the regularized spectral data $\{s_k\}_{-\infty}^\infty$ of the operator $L_\mathrm D$ are placed. We prove the following main theorem: the map $Fq=\{s_k\}$ from $W^\theta _2$ to $\widehat l_2^{\,\theta}$ is weakly nonlinear (i.e., it is a compact perturbation of a linear map). A similar result is obtained for the operator $L_\mathrm{DN}$ generated by the same differential expression and the Dirichlet–Neumann boundary conditions. These results serve as a basis for solving the problem of uniform stability of recovering a potential. Note that this problem has not been considered in the literature. The uniform stability results are formulated here, but their proof will be presented elsewhere.
Received in August 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 260, Pages 218–237
DOI: https://doi.org/10.1134/S0081543808010161
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “On the Properties of Maps Connected with Inverse Sturm–Liouville Problems”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 227–247; Proc. Steklov Inst. Math., 260 (2008), 218–237
Citation in format AMSBIB
\Bibitem{SavShk08}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 227--247
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm597}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489515}
\zmath{https://zbmath.org/?q=an:1233.34010}
\elib{https://elibrary.ru/item.asp?id=9934829}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 218--237
\crossref{https://doi.org/10.1134/S0081543808010161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800016}
\elib{https://elibrary.ru/item.asp?id=13577207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749120932}
Linking options:
  • https://www.mathnet.ru/eng/tm597
  • https://www.mathnet.ru/eng/tm/v260/p227
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:714
    Full-text PDF :146
    References:88
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024