Abstract:
We study the asymptotic behavior as $t\to+\infty$ of solutions to a semilinear second-order parabolic equation in a cylindrical domain bounded in the spatial variable. We find the leading term of the asymptotic expansion of a solution as $t\to+\infty$ and show that each solution of the problem under consideration is asymptotically equivalent to a solution of some nonlinear ordinary differential equation.
Citation:
V. A. Kondrat'ev, “On the Asymptotic Behavior of Solutions of Nonlinear Second-Order Parabolic Equations”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 180–192; Proc. Steklov Inst. Math., 260 (2008), 172–184
\Bibitem{Kon08}
\by V.~A.~Kondrat'ev
\paper On the Asymptotic Behavior of Solutions of Nonlinear Second-Order Parabolic Equations
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 180--192
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489511}
\elib{https://elibrary.ru/item.asp?id=9934825}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 172--184
\crossref{https://doi.org/10.1134/S0081543808010124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800012}
\elib{https://elibrary.ru/item.asp?id=13569680}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749094985}
Linking options:
https://www.mathnet.ru/eng/tm593
https://www.mathnet.ru/eng/tm/v260/p180
This publication is cited in the following 3 articles:
A. A. Kon'kov, “Maximum principle for nonlinear parabolic equations”, J. Math. Sci. (N. Y.), 234:4 (2018), 423–439
A. A. Konkov, “O printsipe maksimuma dlya odnogo klassa nelineinykh parabolicheskikh uravnenii”, Vestn. SamGU. Estestvennonauchn. ser., 2015, no. 6(128), 89–92
I. V. Astashova, L. A. Bagirov, A. V. Filinovskii, G. V. Grishina, V. A. Il'in, A. A. Kon'kov, V. V. Kozlov, V. A. Nikishkin, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, I. N. Sergeev, A. S. Shamaev, “Vladimir Aleksandrovich Kondrat'ev”, Diff Equat, 46:12 (2010), 1807