Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 251, Pages 54–126 (Mi tm45)  

This article is cited in 45 scientific papers (total in 46 papers)

Addition Laws on Jacobian Varieties of Plane Algebraic Curves

V. M. Buchstabera, D. V. Leikinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: The paper is devoted to the theory of sigma functions defined on Jacobi varieties of plane algebraic curves. We develop this theory aiming at applications in the theory of nonlinear differential equations and mathematical physics. We propose a method for studying addition laws of Abelian functions which is based on polylinear functional equations that hold for sigma functions. The solutions to polylinear functional equations are constructed with the help of the following key tools: (1) a degenerate Baker–Akhiezer function with a unique singularity in the neighborhood of which this function behaves like ξgexp{p(ξ1)}(1+O(ξ)), wher g is the genus of the curve and p is a polynomial of degree at most 2g1; (2) entire rational functions Rkg that have kg zeros on the curve and define the operations of inversion, when k=2, and addition, when k=3, on the gth symmetric power of the curve. We give explicit addition formulas for hyperelliptic Abelian functions and present a construction of multidimensional heat equations in a nonholonomic frame that hold for sigma functions. We also establish a relation between the recursions that define the power series expansion of sigma functions and the Cauchy problems for systems of linear difference equations. The exposition includes several open problems and a large number of examples.
Received in July 2005
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, “Addition Laws on Jacobian Varieties of Plane Algebraic Curves”, Nonlinear dynamics, Collected papers, Trudy Mat. Inst. Steklova, 251, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 54–126; Proc. Steklov Inst. Math., 251 (2005), 49–120
Citation in format AMSBIB
\Bibitem{BucLei05}
\by V.~M.~Buchstaber, D.~V.~Leikin
\paper Addition Laws on Jacobian Varieties of Plane Algebraic Curves
\inbook Nonlinear dynamics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 251
\pages 54--126
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2234377}
\zmath{https://zbmath.org/?q=an:1132.14024}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 251
\pages 49--120
Linking options:
  • https://www.mathnet.ru/eng/tm45
  • https://www.mathnet.ru/eng/tm/v251/p54
  • This publication is cited in the following 46 articles:
    1. A. A. Illarionov, “Calculation of hyperelliptic systems of sequences of rank 4”, Izv. Math., 87:6 (2023), 1185–1209  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. M. Buchstaber, A. P. Veselov, A. A. Gaifullin, “Classification of involutive commutative two-valued groups”, Russian Math. Surveys, 77:4 (2022), 651–727  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
    4. V. M. Buchstaber, A. V. Mikhailov, “Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves”, Russian Math. Surveys, 76:4 (2021), 587–652  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. V. Domrin, “Uniqueness theorem for the two-dimensional sigma function”, Funct. Anal. Appl., 54:1 (2020), 21–30  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. A. Illarionov, “On a Multilinear Functional Equation”, Math. Notes, 107:1 (2020), 80–92  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Julia Bernatska, Yaacov Kopeliovich, “Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials”, SIGMA, 16 (2020), 053, 21 pp.  mathnet  crossref
    8. Bernatska J., Enolski V., Nakayashiki A., “Sato Grassmannian and Degenerate SIGMA Function”, Commun. Math. Phys., 374:2 (2020), 627–660  crossref  mathscinet  isi
    9. Buchstaber V.M. Enolski V.Z. Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 175–214  mathscinet  isi
    10. A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami. II”, Sib. elektron. matem. izv., 16 (2019), 481–492  mathnet  crossref
    11. V. M. Buchstaber, A. P. Veselov, “Conway topograph, $\mathrm{PGL}_2(\pmb{\mathbb Z})$-dynamics and two-valued groups”, Russian Math. Surveys, 74:3 (2019), 387–430  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. A. Illarionov, N. V. Markova, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami. III”, Dalnevost. matem. zhurn., 19:2 (2019), 197–205  mathnet
    13. A. A. Illarionov, “Hyperelliptic systems of sequences of rank 4”, Sb. Math., 210:9 (2019), 1259–1287  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. A. Illarionov, M. A. Romanov, “Hyperquasipolynomials for the Theta-Function”, Funct. Anal. Appl., 52:3 (2018), 228–231  mathnet  crossref  crossref  mathscinet  isi  elib
    15. Julia Bernatska, Dmitry Leykin, “On Regularization of Second Kind Integrals”, SIGMA, 14 (2018), 074, 28 pp.  mathnet  crossref
    16. Joe Suzuki, “Klein's Fundamental $2$-Form of Second Kind for the $C_{ab}$ Curves”, SIGMA, 13 (2017), 017, 13 pp.  mathnet  crossref
    17. P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299 (2017), 96–108  mathnet  crossref  crossref  isi  elib
    19. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    20. V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1303
    Full-text PDF :488
    References:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025