Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 251, Pages 54–126 (Mi tm45)  

This article is cited in 45 scientific papers (total in 46 papers)

Addition Laws on Jacobian Varieties of Plane Algebraic Curves

V. M. Buchstabera, D. V. Leikinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: The paper is devoted to the theory of sigma functions defined on Jacobi varieties of plane algebraic curves. We develop this theory aiming at applications in the theory of nonlinear differential equations and mathematical physics. We propose a method for studying addition laws of Abelian functions which is based on polylinear functional equations that hold for sigma functions. The solutions to polylinear functional equations are constructed with the help of the following key tools: (1) a degenerate Baker–Akhiezer function with a unique singularity in the neighborhood of which this function behaves like $\xi ^{-g}\exp \{p(\xi ^{-1})\}(1+O(\xi ))$, wher $g$ is the genus of the curve and $p$ is a polynomial of degree at most $2g-1$; (2) entire rational functions $R_{kg}$ that have $kg$ zeros on the curve and define the operations of inversion, when $k=2$, and addition, when $k=3$, on the $g$th symmetric power of the curve. We give explicit addition formulas for hyperelliptic Abelian functions and present a construction of multidimensional heat equations in a nonholonomic frame that hold for sigma functions. We also establish a relation between the recursions that define the power series expansion of sigma functions and the Cauchy problems for systems of linear difference equations. The exposition includes several open problems and a large number of examples.
Received in July 2005
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, “Addition Laws on Jacobian Varieties of Plane Algebraic Curves”, Nonlinear dynamics, Collected papers, Trudy Mat. Inst. Steklova, 251, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 54–126; Proc. Steklov Inst. Math., 251 (2005), 49–120
Citation in format AMSBIB
\Bibitem{BucLei05}
\by V.~M.~Buchstaber, D.~V.~Leikin
\paper Addition Laws on Jacobian Varieties of Plane Algebraic Curves
\inbook Nonlinear dynamics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 251
\pages 54--126
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2234377}
\zmath{https://zbmath.org/?q=an:1132.14024}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 251
\pages 49--120
Linking options:
  • https://www.mathnet.ru/eng/tm45
  • https://www.mathnet.ru/eng/tm/v251/p54
  • This publication is cited in the following 46 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1230
    Full-text PDF :452
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024