|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 251, Pages 127–138
(Mi tm46)
|
|
|
|
Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space
M. Wolfa, A. D. Popova, A. G. Sergeevb a Leibniz University of Hannover
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Noncommutative Seiberg–Witten equations on the noncommutative Euclidean space $\mathbb R^4_\theta$ are studied that are obtained from the standard Seiberg–Witten equations on $\mathbb R^4$ by replacing the usual product with the deformed Moyal $\star$-product. Nontrivial solutions of these noncommutative Seiberg–Witten equations are constructed that do not reduce to solutions of the standard Seiberg–Witten equations on $\mathbb R^4$ for $\theta \to 0$. Such solutions of the noncommutative equations on $\mathbb R^4_\theta$ exist even when the corresponding commutative Seiberg–Witten equations on $\mathbb R^4$ do not have any nontrivial solutions.
Received in November 2004
Citation:
M. Wolf, A. D. Popov, A. G. Sergeev, “Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space”, Nonlinear dynamics, Collected papers, Trudy Mat. Inst. Steklova, 251, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 127–138; Proc. Steklov Inst. Math., 251 (2005), 121–131
Linking options:
https://www.mathnet.ru/eng/tm46 https://www.mathnet.ru/eng/tm/v251/p127
|
Statistics & downloads: |
Abstract page: | 583 | Full-text PDF : | 153 | References: | 78 |
|