Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 251, Pages 10–53 (Mi tm44)  

This article is cited in 2 scientific papers (total in 2 papers)

Spectral Theory of the Nonstationary Schrödinger Equation with a Bidimensionally Perturbed One-Dimensional Potential

M. Boitia, F. Pempinellia, A. K. Pogrebkovb, B. Prinari

a Lecce University
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (419 kB) Citations (2)
References:
Abstract: We derive and describe in detail the extension of the inverse scattering transform method to the case of linear spectral problems with potentials that do not decay in some space directions. Our presentation is based on the extended resolvent approach. As a basic example, we consider the nonstationary Schrödinger equation with a potential that is a perturbation of a generic one-dimensional potential by means of a decaying function of two variables. We give the corresponding modifications of the Jost solutions and the spectral data and derive their properties and characterization equations.
Received in January 2005
Bibliographic databases:
Document Type: Article
UDC: 530.1
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Spectral Theory of the Nonstationary Schrödinger Equation with a Bidimensionally Perturbed One-Dimensional Potential”, Nonlinear dynamics, Collected papers, Trudy Mat. Inst. Steklova, 251, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 10–53; Proc. Steklov Inst. Math., 251 (2005), 6–48
Citation in format AMSBIB
\Bibitem{BoiPemPog05}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov, B.~Prinari
\paper Spectral Theory of the Nonstationary Schr\"odinger Equation with a~Bidimensionally Perturbed One-Dimensional Potential
\inbook Nonlinear dynamics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 251
\pages 10--53
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2234376}
\zmath{https://zbmath.org/?q=an:1123.35051}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 251
\pages 6--48
Linking options:
  • https://www.mathnet.ru/eng/tm44
  • https://www.mathnet.ru/eng/tm/v251/p10
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:582
    Full-text PDF :131
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024