Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, Forthcoming paper (Mi tm4432)  

Manifolds realized as orbit spaces of non-free $\mathbb Z_2^k$-actions on real moment-angle manifolds

N. Yu. Erokhovetsab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: We consider (non-necessarily free) actions of subgroups $H\subset \mathbb Z_2^m$ on the real moment-angle manifold $\mathbb R\mathcal{Z}_P$ corresponding to a simple convex $n$ polytope $P$ with $m$ facets. The criterion when the orbit space $\mathbb R\mathcal{Z}_P/H$ is a topological manifold (perhaps with a boundary) can be extracted from results by M.A. Mikhailova and C. Lange. For any dimension $n$ we construct series of manifolds $\mathbb R\mathcal{Z}_P/H$ homeomorphic to $S^n$ and series of manifolds $M^n=\mathbb R\mathcal{Z}_P/H$ admitting a hyperelliptic involution $\tau\in\mathbb Z_2^m/H$, that is an involution $\tau$ such that $M^n/\langle\tau\rangle$ is homeomorphic to $S^n$. For any simple $3$-polytope $P$ we classify all subgroups $H\subset\mathbb Z_2^m$ such that $\mathbb R\mathcal{Z}_P/H$ is homeomorphic to $S^3$. For any simple $3$-polytope $P$ and any subgroup $H\subset\mathbb Z_2^m$ we classify all hyperelliptic involutions $\tau\in\mathbb Z_2^m/H$ acting on $\mathbb R\mathcal{Z}_P/H$. As a corollary we obtain that a $3$-dimensional small cover has $3$ hyperelliptic involutions in $\mathbb Z_2^3$ if and only if it is a rational homology $3$-sphere and if and only if it corresponds to a triple of Hamiltonian cycles such that each edge of the polytope belongs to exactly two of them.
Keywords: non-free action of a finite group, convex polytope, real moment-angle manifold, hyperelliptic manifold, rational homology sphere, Hamiltonian cycle
Funding agency Grant number
Russian Science Foundation 23-11-00143
This work was supported by the Russian Science Foundation under grant no. 23-11-00143, https://rscf.ru/en/project/23-11-00143/
Received: March 1, 2024
Revised: June 19, 2024
Accepted: June 29, 2024
Document Type: Article
UDC: 515.14+515.16+514.15+514.172.45
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/tm4432
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024