Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 193–239
DOI: https://doi.org/10.4213/tm4432
(Mi tm4432)
 

Manifolds Realized as Orbit Spaces of Non-free Zk2-Actions on Real Moment–Angle Manifolds

Nikolai Yu. Erokhovetsab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We consider (not necessarily free) actions of subgroups HZm2 on the real moment–angle manifold RZP corresponding to a simple convex n-polytope P with m facets. A criterion for the orbit space RZP/H to be a topological manifold (perhaps with boundary) can be extracted from results by M. A. Mikhailova and C. Lange. For any dimension n we construct a series of manifolds RZP/H homeomorphic to Sn and a series of manifolds Mn=RZP/H admitting a hyperelliptic involution τZm2/H, that is, an involution τ such that Mn/τ is homeomorphic to Sn. For any simple 3-polytope P we classify all subgroups HZm2 such that RZP/H is homeomorphic to S3. For any simple 3-polytope P and any subgroup HZm2 we classify all hyperelliptic involutions τZm2/H acting on RZP/H. As a corollary we show that a three-dimensional small cover has three hyperelliptic involutions in Z32 if and only if it is a rational homology 3-sphere and if and only if it corresponds to a triple of Hamiltonian cycles such that each edge of the polytope belongs to exactly two of them.
Keywords: non-free action of a finite group, convex polytope, real moment–angle manifold, hyperelliptic manifold, rational homology sphere, Hamiltonian cycle.
Funding agency Grant number
Russian Science Foundation 23-11-00143
This work was supported by the Russian Science Foundation under grant no. 23-11-00143, https://rscf.ru/en/project/23-11-00143/, and performed at the Steklov Mathematical Institute of Russian Academy of Sciences.
Received: March 1, 2024
Revised: June 19, 2024
Accepted: June 29, 2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 326, Pages 177–218
DOI: https://doi.org/10.1134/S0081543824040096
Bibliographic databases:
Document Type: Article
UDC: 515.14+515.16+514.15+514.172.45
Language: Russian
Citation: Nikolai Yu. Erokhovets, “Manifolds Realized as Orbit Spaces of Non-free Zk2-Actions on Real Moment–Angle Manifolds”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 193–239; Proc. Steklov Inst. Math., 326 (2024), 177–218
Citation in format AMSBIB
\Bibitem{Ero24}
\by Nikolai~Yu.~Erokhovets
\paper Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment--Angle Manifolds
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 193--239
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4432}
\crossref{https://doi.org/10.4213/tm4432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679116}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 326
\pages 177--218
\crossref{https://doi.org/10.1134/S0081543824040096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000247000}
Linking options:
  • https://www.mathnet.ru/eng/tm4432
  • https://doi.org/10.4213/tm4432
  • https://www.mathnet.ru/eng/tm/v326/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :1
    References:19
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025