Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 240–274
DOI: https://doi.org/10.4213/tm4429
(Mi tm4429)
 

$\mathbb{Z}_2$-homology of the orbit spaces $G_{n,2}/T^n$

V. Ivanović, S. Terzić

University of Montenegro
Abstract: We study the $\mathbb Z_2$-homology groups of the orbit space $X_n = G_{n,2}/T^n$ for the canonical action of the compact torus $T^n$ on a complex Grassmann manifold $G_{n,2}$. Our starting point is the model $(U_n, p_n)$ for $X_n$ constructed by Buchstaber and Terzić (2020), where $U_n = \Delta _{n,2}\times \mathcal{F}_{n}$ for a hypersimplex $\Delta_{n,2}$ and an universal space of parameters $\mathcal{F}_{n}$ defined in the works of Buchstaber and Terzić (2019), (2020). It is proved by Buchstaber and Terzić (2021) that $\mathcal{F}_{n}$ is diffeomorphic to the moduli space $\mathcal{M}_{0,n}$ of stable $n$-pointed genus zero curves. We exploit the results of Keel (1992) and Ceyhan (2009) on homology groups of $\mathcal{M}_{0,n}$ and express them in terms of thestratification of $\mathcal{F}_{n}$ which are incorporated in the model $(U_n, p_n)$. In the result we provide the description of cycles in $X_n$, inductively on $ n. $ We obtain as well explicit formulas for $\mathbb Z_2$-homology groups for $X_5$ and $X_6$. The results for $X_5$ recover by different method the results from Buchstaber and Terzić (2021) and Süss (2020). The results for $X_6$ we consider to be new.
Keywords: Torus action, Grassmann manifold,spaces of parameters.
Received: March 4, 2024
Revised: June 23, 2024
Accepted: July 3, 2024
Document Type: Article
Language: Russian
Citation: V. Ivanović, S. Terzić, “$\mathbb{Z}_2$-homology of the orbit spaces $G_{n,2}/T^n$”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 240–274
Citation in format AMSBIB
\Bibitem{IvaTer24}
\by V.~Ivanovi{\'c}, S.~Terzi\'c
\paper $\mathbb{Z}_2$-homology of the orbit spaces $G_{n,2}/T^n$
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 240--274
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4429}
\crossref{https://doi.org/10.4213/tm4429}
Linking options:
  • https://www.mathnet.ru/eng/tm4429
  • https://doi.org/10.4213/tm4429
  • https://www.mathnet.ru/eng/tm/v326/p240
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024