Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 177–192
DOI: https://doi.org/10.4213/tm4296
(Mi tm4296)
 

This article is cited in 1 scientific paper (total in 1 paper)

Toric Surfaces with Reflection Symmetries

Jongbaek Song

School of Mathematics, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Korea
Full-text PDF (268 kB) Citations (1)
References:
Abstract: Let $W$ be a reflection group in a plane and $P$ a rational polygon that is invariant under the $W$-action. The action of $W$ on $P$ induces a $W$-action on the toric variety $X_P$ associated with $P$. In this paper, we study the $W$-representation on the cohomology $H^*(X_P)$ and show that the invariant subring $H^*(X_P)^W$ is isomorphic to the cohomology ring of the toric variety associated with the fundamental region $P/W$. As an example, we provide an explicit description of the main result for the case of the toric variety associated with the fan of Weyl chambers of type $G_2$.
Keywords: toric variety, toric surface, reflection, singular cohomology.
Funding agency Grant number
National Research Foundation of Korea NRF-2018R1D1A1B07048480
Korea Institute for Advanced Study MG076101
The work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (project no. NRF-2018R1D1A1B07048480) and by the KIAS Individual Grant (project no. MG076101) at the Korea Institute for Advanced Study.
Received: March 10, 2022
Revised: June 24, 2022
Accepted: June 30, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 161–174
DOI: https://doi.org/10.1134/S0081543822040113
Bibliographic databases:
Document Type: Article
UDC: 515.165.4
MSC: 14M25, 52B15, 57S12
Language: Russian
Citation: Jongbaek Song, “Toric Surfaces with Reflection Symmetries”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 177–192; Proc. Steklov Inst. Math., 318 (2022), 161–174
Citation in format AMSBIB
\Bibitem{Son22}
\by Jongbaek~Song
\paper Toric Surfaces with Reflection Symmetries
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 177--192
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4296}
\crossref{https://doi.org/10.4213/tm4296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538841}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 161--174
\crossref{https://doi.org/10.1134/S0081543822040113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142149711}
Linking options:
  • https://www.mathnet.ru/eng/tm4296
  • https://doi.org/10.4213/tm4296
  • https://www.mathnet.ru/eng/tm/v318/p177
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :18
    References:26
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024