Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 166–176
DOI: https://doi.org/10.4213/tm4297
(Mi tm4297)
 

Homology and Cohomology of the Lamplighter Lie Algebra

D. V. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: It is shown that the lamplighter Lie algebra $\mathfrak l$ over the field of rational numbers, introduced by S. Ivanov, R. Mikhailov, and A. Zaikovskii, is isomorphic to the infinite-dimensional naturally graded Lie algebra of maximal class $\mathfrak m_0$. Y. Félix and A. Murillo proved that its $q$-dimensional homology $H_q(\mathfrak l,\mathbb Q)$ is infinite-dimensional. However, they failed to completely calculate the spaces $H_q(\mathfrak l,\mathbb Q)$, $q\ge 3$. In this paper, an infinite basis of the bigraded homology $H_{*,*}(\mathfrak l,\mathbb Q)$ is explicitly constructed using the results of D. Millionshchikov and A. Fialowski on the cohomology $H^*(\mathfrak l,\mathbb Q)$.
Keywords: homology, cohomology, lamplighter group, pronilpotent completion, Lie algebra of maximal class, $\mathfrak {sl}_2$-module.
Funding agency Grant number
Russian Science Foundation 20-11-19998
The work was supported by the Russian Science Foundation under grant no. 20-11-19998, https://rscf.ru/project/20-11-19998/.
Received: April 5, 2022
Revised: June 28, 2022
Accepted: June 30, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 150–160
DOI: https://doi.org/10.1134/S0081543822040101
Bibliographic databases:
Document Type: Article
UDC: 515.146.3+512.662.1
Language: Russian
Citation: D. V. Millionshchikov, “Homology and Cohomology of the Lamplighter Lie Algebra”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 166–176; Proc. Steklov Inst. Math., 318 (2022), 150–160
Citation in format AMSBIB
\Bibitem{Mil22}
\by D.~V.~Millionshchikov
\paper Homology and Cohomology of the Lamplighter Lie Algebra
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 166--176
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4297}
\crossref{https://doi.org/10.4213/tm4297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538840}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 150--160
\crossref{https://doi.org/10.1134/S0081543822040101}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144124817}
Linking options:
  • https://www.mathnet.ru/eng/tm4297
  • https://doi.org/10.4213/tm4297
  • https://www.mathnet.ru/eng/tm/v318/p166
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :29
    References:31
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024