Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 193–203
DOI: https://doi.org/10.4213/tm4279
(Mi tm4279)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the Component Group of a Real Algebraic Group

Dmitry A. Timashev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
Full-text PDF (227 kB) Citations (3)
References:
Abstract: For a connected linear algebraic group $G$ defined over $\mathbb R$, we compute the component group $\pi _0G(\mathbb R)$ of the real Lie group $G(\mathbb R)$ in terms of a maximal split torus $T_{\mathrm{s}}\subseteq G$. In particular, we recover a theorem of Matsumoto (1964) that each connected component of $G(\mathbb R)$ intersects $T_{\mathrm{s}}(\mathbb R)$. We provide explicit elements of $T_{\mathrm{s}}(\mathbb R)$ which represent all connected components of $G(\mathbb R)$. The computation is based on structure results for real loci of algebraic groups and on methods of Galois cohomology.
Keywords: real algebraic group, component group, split torus, real Galois cohomology.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00091
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00091) and by the Ministry of Science and Higher Education of Russia in the framework of the program of the Moscow Center of Fundamental and Applied Mathematics (agreement no. 075-15-2022-284).
Received: March 26, 2022
Revised: May 25, 2022
Accepted: June 1, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 175–184
DOI: https://doi.org/10.1134/S0081543822040125
Bibliographic databases:
Document Type: Article
UDC: 512.743+512.812+512.752
Language: Russian
Citation: Dmitry A. Timashev, “On the Component Group of a Real Algebraic Group”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 193–203; Proc. Steklov Inst. Math., 318 (2022), 175–184
Citation in format AMSBIB
\Bibitem{Tim22}
\by Dmitry~A.~Timashev
\paper On the Component Group of a Real Algebraic Group
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 193--203
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4279}
\crossref{https://doi.org/10.4213/tm4279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538842}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 175--184
\crossref{https://doi.org/10.1134/S0081543822040125}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142170976}
Linking options:
  • https://www.mathnet.ru/eng/tm4279
  • https://doi.org/10.4213/tm4279
  • https://www.mathnet.ru/eng/tm/v318/p193
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :51
    References:37
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024