Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 314, Pages 290–300
DOI: https://doi.org/10.4213/tm4196
(Mi tm4196)
 

This article is cited in 2 scientific papers (total in 2 papers)

An Asymmetric Bound for Sum of Distance Sets

Daewoong Cheonga, Doowon Koha, Thang Phambc

a Department of Mathematics, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
b Department of Mathematics, HUS, Vietnam National University, 100000 Hanoi, Vietnam
c The group Theory of Combinatorial Algorithms, ETH Zurich, 8092 Zurich, Switzerland
Full-text PDF (227 kB) Citations (2)
References:
Abstract: For $E\subset \mathbb F_q^d$, let $\Delta (E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,F\subset \mathbb F_q^d$ are subsets with $|E|\cdot |F|\gg q^{d+{1}/{3}}$, then $|\Delta (E)+\Delta (F)|>q/2$. They also proved that the threshold $q^{d+{1}/{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.
Funding agency Grant number
National Research Foundation of Korea NRF-2018R1D1A3B07045594
NRF-2018R1D1A1B07044469
Swiss National Science Foundation P400P2-183916
P4P4P2-191067
Daewoong Cheong and Doowon Koh were supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07045594 and NRF-2018R1D1A1B07044469, respectively). Thang Pham was supported by the Swiss National Science Foundation grants P400P2-183916 and P4P4P2-191067.
Received: July 25, 2020
Revised: February 25, 2021
Accepted: June 24, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 314, Pages 279–289
DOI: https://doi.org/10.1134/S0081543821040131
Bibliographic databases:
Document Type: Article
UDC: 511.178
MSC: 52C10, 42B05, 11T23
Language: Russian
Citation: Daewoong Cheong, Doowon Koh, Thang Pham, “An Asymmetric Bound for Sum of Distance Sets”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 290–300; Proc. Steklov Inst. Math., 314 (2021), 279–289
Citation in format AMSBIB
\Bibitem{CheKohPha21}
\by Daewoong~Cheong, Doowon~Koh, Thang~Pham
\paper An Asymmetric Bound for Sum of Distance Sets
\inbook Analytic and Combinatorial Number Theory
\bookinfo Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 314
\pages 290--300
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4196}
\crossref{https://doi.org/10.4213/tm4196}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 314
\pages 279--289
\crossref{https://doi.org/10.1134/S0081543821040131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000705530700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116922269}
Linking options:
  • https://www.mathnet.ru/eng/tm4196
  • https://doi.org/10.4213/tm4196
  • https://www.mathnet.ru/eng/tm/v314/p290
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :18
    References:58
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024