|
Effective Erdős–Wintner Theorems
Gérald Tenenbaum, Johann Verwee Institut Élie Cartan, Université de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
Abstract:
The classical theorem of Erdős and Wintner furnishes a criterion for the existence of a limiting distribution for a real additive arithmetical function. This work is devoted to providing an effective estimate for the remainder term under the assumption that the conditions in the criterion are fulfilled. We also investigate the case of a conditional distribution.
Keywords:
distribution of real additive functions, mean values of complex multiplicative function, Erdős–Wintner theorem, effective averages, number of prime factors.
Received: February 18, 2020 Revised: February 28, 2021 Accepted: May 2, 2021
Citation:
Gérald Tenenbaum, Johann Verwee, “Effective Erdős–Wintner Theorems”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 275–289; Proc. Steklov Inst. Math., 314 (2021), 264–278
Linking options:
https://www.mathnet.ru/eng/tm4162https://doi.org/10.4213/tm4162 https://www.mathnet.ru/eng/tm/v314/p275
|
Statistics & downloads: |
Abstract page: | 157 | Full-text PDF : | 36 | References: | 36 | First page: | 4 |
|